
OP-TEE Documentation

TrustedFirmware.org

Apr 12, 2024

CONTENTS

1 Getting started 3
1.1 About OP-TEE . 3
1.2 Coding standards . 4
1.3 Contribute . 5
1.4 Contact . 8
1.5 License headers . 10
1.6 Platforms supported . 10
1.7 Presentations . 12
1.8 Releases . 14

2 Architecture 19
2.1 Core . 19
2.2 Cryptographic implementation . 50
2.3 Device Tree . 54
2.4 Device tree bindings . 57
2.5 File structure . 59
2.6 GlobalPlatform API . 61
2.7 Libraries . 72
2.8 Porting guidelines . 73
2.9 Secure boot . 79
2.10 Secure storage . 80
2.11 Subkeys . 89
2.12 Trusted Applications . 92
2.13 Virtualization . 102
2.14 SPMC . 104
2.15 Arm Security Extensions . 115
2.16 Platform documentation . 116

3 Build and run 119
3.1 Prerequisites . 119
3.2 Device specific information . 122
3.3 AOSP . 149
3.4 Linux kernel TEE framework . 152
3.5 OP-TEE gits . 152
3.6 Toolchains . 185
3.7 Trusted Applications . 186
3.8 StandAloneMM . 195
3.9 OP-TEE with Rust . 196
3.10 Linux userland integration . 198

i

4 Debugging techniques 205
4.1 Abort dumps / call stack . 205
4.2 Ftrace (function tracing) . 207
4.3 Gprof . 209

5 Frequently Asked Questions 211
5.1 Abbreviations . 213
5.2 Architecture . 213
5.3 Board support . 215
5.4 Building . 215
5.5 Certification and security reviews . 218
5.6 Contribution . 219
5.7 Interfaces . 219
5.8 Hardware and peripherals . 220
5.9 License . 221
5.10 Promotion . 221
5.11 Security vulnerabilities . 221
5.12 Source code . 222
5.13 Testing . 222
5.14 Trusted Applications . 222

ii

OP-TEE Documentation

This is the official location for OP-TEE documentation.

CONTENTS 1

OP-TEE Documentation

2 CONTENTS

CHAPTER

ONE

GETTING STARTED

This contains general information about OP-TEE, how to get in contact, how to contribute, how to report security issues
etc. It is intended for people who are new to OP-TEE.

1.1 About OP-TEE

OP-TEE is a Trusted Execution Environment (TEE) designed as companion to a non-secure Linux kernel running on
Arm; Cortex-A cores using the TrustZone technology. OP-TEE implements TEE Internal Core API v1.3.1 which is the
API exposed to Trusted Applications and the TEE Client API v1.0, which is the API describing how to communicate
with a TEE. Those APIs are defined in the GlobalPlatform API specifications.

The non-secure OS is referred to as the Rich Execution Environment (REE) in TEE specifications. It is typically a
Linux OS flavor as a GNU/Linux distribution or the AOSP.

OP-TEE is designed primarily to rely on the Arm TrustZone technology as the underlying hardware isolation mecha-
nism. However, it has been structured to be compatible with any isolation technology suitable for the TEE concept and
goals, such as running as a virtual machine or on a dedicated CPU.

The main design goals for OP-TEE are:

• Isolation - the TEE provides isolation from the non-secure OS and protects the loaded Trusted Applications
(TAs) from each other using underlying hardware support,

• Small footprint - the TEE should remain small enough to reside in a reasonable amount of on-chip memory as
found on Arm based systems,

• Portability - the TEE aims at being easily pluggable to different architectures and available HW and has to
support various setups such as multiple client OSes or multiple TEEs.

1.1.1 OP-TEE components

OP-TEE is divided in various components:

• A secure privileged layer, executing at Arm secure PL-1 (v7-A) or EL-1 (v8-A) level.

• A set of secure user space libraries designed for Trusted Applications needs.

• A Linux kernel TEE framework and driver (merged to the official tree in v4.12).

• A Linux user space library designed upon the GlobalPlatform TEE Client API specifications.

• A Linux user space supplicant daemon (tee-supplicant) responsible for remote services expected by the TEE OS.

• A test suite (xtest), for doing regression testing and testing the consistency of the API implementations.

• An example git containing a couple of simple host- and TA-examples.

3

OP-TEE Documentation

• And some build scripts, debugging tools to ease its integration and the development of Trusted Applications and
secure services.

These components are available from several git repositories. The main ones are build, optee_os, optee_client,
optee_test, optee_examples and the Linux kernel TEE framework.

1.1.2 History

OP-TEE was initially developed by ST-Ericsson (and later on by STMicroelectronics), but this was before OP-TEE got
the name “OP-TEE” and was turned into an open source project. Back then it was a closed source and a proprietary TEE
project. In 2013, ST-Ericsson obtained GlobalPlatform’s compliance qualification with this implementation, proving
that the APIs were behaving as expected according to the GlobalPlatform specifications.

Later on the same year (2013) Linaro was about to form Security Working Group (SWG) and one of the initial key
tasks for SWG was to work on an open source TEE project. After talking to various TEE vendors Linaro ended up
working with STMicroelectronics TEE project. But before being able to open source it there was a need to replace some
proprietary components with open source components. For a couple of months Linaro/SWG together with engineers
from STMicroelectronics re-wrote major parts (crypto library, secure monitor, build system etc), cleaned up the project
by enforcing Coding standards, running checkpatch etc.

June 12 2014 was the day when OP-TEE was “born” as an open source project. At that day the OP-TEE team pushed
the first commit to GitHub. A bit after this Linaro also made a press release about this. That press release contains a
bit more information. At the first year as an open source project it was owned by STMicroelectronics but maintained
by Linaro and STMicroelectronics. In 2015 there was an ownership transfer of OP-TEE from STMicroelectronics to
Linaro. In September 2019, ownership was transferred from Linaro to the TrustedFirmware.org project (see _blogpost
for more information). Maintenance is a shared responsibility between the members for TrustedFirmware.org and some
community maintainers representing other companies who are using OP-TEE.

1.2 Coding standards

In this project we are trying to adhere to the same coding convention as used in the Linux kernel (see CodingStyle).
We achieve this by running checkpatch from Linux kernel. However there are a few exceptions that we had to make
since the code also follows GlobalPlatform standards. The exceptions are as follows:

1. CamelCase for GlobalPlatform types is allowed.

2. We do not run checkpatch on third party code that we might use in this project, such as LibTomCrypt, MPA,
newlib etc. The reason for that and not doing checkpatch fixes for third party code is because we would probably
deviate too much from upstream and therefore it would be hard to rebase against those projects later on and we
don’t expect that it is easy to convince other software projects to change coding style.

3. All variables shall be initialized to a well known value in one or another way. The reason for that is that we
have had potential security issues in the past that originated from not having variables initialized with a well
defined value. We have also investigate various toolchain flags that are supposed to help out finding uninitialized
variables. Unfortunately our conclusion is that you cannot trust the compilers here, since there are corner cases
where compilers cannot reliably give a warning.

Variables are initialized according to these general guidelines:

• Scalars (and types like time_t which are standardized as scalars) are initialized with 0, unless another value
makes more sense.

• For optee_client we need maximum portability. So use { 0 } for struct types where the first element is known
to be a scalar and memset() otherwise unless there is a good reason not to do so.

4 Chapter 1. Getting started

http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/scripts/checkpatch.pl
https://github.com/OP-TEE/optee_os/commit/b01047730e77127c23a36591643eeb8bb0487d68
https://www.linaro.org/blog/op-tee-open-source-security-mass-market/
https://www.kernel.org/doc/html/latest/process/coding-style.html
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/scripts/checkpatch.pl
https://github.com/OP-TEE/optee_client

OP-TEE Documentation

• For the rest of the gits we assume that a recent version of GCC or Clang is used so we initialize structs with {
} in order to avoid the more clumsy memset() procedure. Types like pthread_t which can be a scalar or a
composite type are initialized with memset() in order to minimize the amount of future headache. Arrays are
initialized with { }, too.

Unsigned integer constants are defined using the U(), UL() or ULL() macros, depending on the required width. U()
is a good choice for 32-bit values. Any of the minimum width cousins UINT{8,16,32,64}_C() are also accepted for
compatibility. This makes the sign and size of the integer well defined instead of depend on how large the value is or
which compiler is used. For example:

#define MY_UNSIGNED_CONSTANT U(123)

1.2.1 Running checkpatch

Regarding the checkpatch tool, it is not included directly into this project. Please use checkpatch.pl from the Linux
kernel git in combination with the local checkpatch script. Environment variable CHECKPATCH is expected to provide
the path to the Linux checkpatch script path, i.e.:

export CHECKPATCH=/path/to/linux/scripts/checkpatch.pl
./scripts/checkpatch.sh HEAD
./scripts/checkpatch.sh --diff github/master HEAD

There are also targets for common use cases in the Makefiles:

export CHECKPATCH=/path/to/linux/scripts/checkpatch.pl
make checkpatch #check staging and working area
make checkpatch-staging #check staging area (added, but not committed files)
make checkpatch-working #check working area (modified, but not added files)

1.3 Contribute

Contributions to OP-TEE are managed by the OP-TEE Core Team and anyone can contribute to OP-TEE as long as it
is understood that it will require a Signed-off-by tag from the one submitting the patch(es). The Signed-off-by tag is a
simple line at the end of the explanation for the patch, which certifies that you wrote it or otherwise have the right to
pass it on as an open source patch (see below). You thereby assure that you have read and are following the rules stated
in the Developer Certificate of Origin as stated below.

1.3.1 Developer Certificate of Origin

Developer Certificate of Origin
Version 1.1

Copyright (C) 2004, 2006 The Linux Foundation and its contributors.
660 York Street, Suite 102,
San Francisco, CA 94110 USA

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

(continues on next page)

1.3. Contribute 5

https://github.com/OP-TEE/optee_os/blob/master/scripts/checkpatch.sh

OP-TEE Documentation

(continued from previous page)

Developer's Certificate of Origin 1.1

By making a contribution to this project, I certify that:

(a) The contribution was created in whole or in part by me and I
have the right to submit it under the open source license
indicated in the file; or

(b) The contribution is based upon previous work that, to the best
of my knowledge, is covered under an appropriate open source
license and I have the right under that license to submit that
work with modifications, whether created in whole or in part
by me, under the same open source license (unless I am
permitted to submit under a different license), as indicated
in the file; or

(c) The contribution was provided directly to me by some other
person who certified (a), (b) or (c) and I have not modified
it.

(d) I understand and agree that this project and the contribution
are public and that a record of the contribution (including all
personal information I submit with it, including my sign-off) is
maintained indefinitely and may be redistributed consistent with
this project or the open source license(s) involved.

We have borrowed this procedure from the Linux kernel project to improve tracking of who did what, and for legal
reasons.

To sign-off a patch, just add a line in the commit message saying:

Signed-off-by: Random J Developer <random@developer.example.org>

Use your real name or on some rare cases a company email address, but we disallow pseudonyms or anonymous
contributions.

1.3.2 GitHub

This section describes how to use GitHub for OP-TEE development and contributions.

Setting up an account

You do not need to own a GitHub account in order to clone a repository. But if you want to contribute, you need to
create an account at GitHub. Note that a free plan is sufficient to collaborate.

SSH is recommended to access your GitHub repositories securely and without supplying your username and password
each time you pull or push something. To configure SSH for GitHub, please refer to Connecting to GitHub with SSH.

6 Chapter 1. Getting started

https://github.com
https://help.github.com/articles/connecting-to-github-with-ssh

OP-TEE Documentation

Forking

Only owners of the OP-TEE projects have write permissions to the git repositories of those projects. Contributors
should fork OP-TEE/*.git and/or linaro-swg/*.git into their own account, then work on this forked repository.
The complete documentation about forking can be found at fork a repo.

Creating pull requests

When you want to submit a patch to the OP-TEE project, you are supposed to create a pull request to the git where you
forked your git from. How that is done using GitHub is explained at the GitHub pull request page.

Commit messages

• The subject line should explain what the patch does as precisely as possible. It is usually prefixed with keywords
indicating which part of the code is affected, but not always. Avoid lines longer than 80 characters.

• The commit description should give more details on what is changed, and explain why it is done. Indication on
how to enable and use some particular feature can be useful, too. Try to limit line length to 72 characters, except
when pasting some error message (compiler diagnostic etc.). Long lines are allowed to accommodate URLs, too
(preferably use URLs in a Fixes: or Link: tag).

• The commit message must end with a blank line followed by some tags, including your Signed-off-by: tag.
By applying such a tag to your commit, you are effectively declaring that your contribution follows the terms
stated by Developer Certificate of Origin (in the DCO section there is also a complete example).

• Other tags may be used, such as:

– Tested-by: Test R <test@r.com>

– Acked-by: Acke R <acke@r.com>

– Suggested-by: Suggeste R <suggeste@r.com>

– Reported-by: Reporte R <reporte@r.com>

• When citing a previous commit, whether it is in the text body or in a Fixes: tag, always use the format shown
above (12 hexadecimal digits prefix of the commit SHA1, followed by the commit subject in double quotes and
parentheses).

Review feedback

It is very likely that you will get review comments from other OP-TEE users asking you to fix certain things etc. When
fixing review comments, do:

• Add fixup patches on top of your existing branch. Do not squash and force push while fixing review comments.

• When all comments have been addressed, just write a simple messages in the comments field saying something
like “All comments have been addressed”. By doing so you will notify the maintainers that the fix might be ready
for review again.

1.3. Contribute 7

https://help.github.com/articles/fork-a-repo
https://help.github.com/articles/creating-a-pull-request
https://help.github.com/articles/creating-a-pull-request

OP-TEE Documentation

Finalizing your contribution

Once you and reviewers have agreed on the patch set, which is when all the people who have commented on the pull
request have given their Acked-by: or Reviewed-by:, you need to consolidate your commits:

Use git rebase -i to squash the fixup commits (if any) into the initial ones. For instance, suppose the git log
--oneline for you contribution looks as follows when the review process ends:

<sha1-commit4> [Review] Do something
<sha1-commit3> [Review] Do something
<sha1-commit2> Do something else
<sha1-commit1> Do something

Then you would do:

$ git rebase -i <sha1-commit1>^

Edit the commit script so it looks like so:

pick <sha1-commit1> Do something
squash <sha1-commit3> [Review] Do something
squash <sha1-commit4> [Review] Do something
pick <sha1-commit2> Do something else

Add the proper tags (Acked-by: ..., Reviewed-by: ..., Tested-by: ...) to the commit message(s) for
each and every commit as provided by the people who reviewed and/or tested the patches.

Hint: git commit --fixup=<sha1-of-commit-to-fix> and later on git rebase -i --autosquash
<sha1-of-first-commit-in-patch-serie>^1 is pretty convenient to use when adding review patches and do-
ing the final squash operation.

Once rebase -i is done, you need to force-push (-f) to your GitHub branch in order to update the pull request page.

$ git push -f <my-remote> <my-branch>

After completing this it is the project maintainers job to apply your patches to the master branch.

1.4 Contact

1.4.1 GitHub

Our preference is to use GitHub for communication. The reason for that is that it is an open source project, so there
should be no real reason to hide discussions from other people. GitHub also makes it possible for anyone to chime in
into discussion etc. So besides sending patches as pull requests on GitHub we also encourage people to use the “issues”
to report bugs, give suggestions, ask questions etc.

Please try to use the “issues” in the relevant git. I.e., if you want to discuss something related to optee_client, then
use “issues” at optee_client and so on. If you have a general question etc about OP-TEE that doesn’t really belong to a
specific git, then please use issues at optee_os in that case.

8 Chapter 1. Getting started

https://help.github.com/articles/about-issues/
https://github.com/OP-TEE/optee_os/issues

OP-TEE Documentation

1.4.2 Email

You can reach the Core Team by sending an email to op-tee[at]lists.trustedfirmware.org. However note that
it’s a public mailinglist and not just TrustedFirmware engineers behind that email address.

For pure Linux kernel patches, please use the appropriate Linux kernel mailinglist, basically run the get_maintainer.
pl script in the Linux kernel tree to figure out where to send your patches.

$ cd <linux-kernel>
$./scripts/get_maintainer.pl drivers/tee/

1.4.3 IRC

Some of the OP-TEE developers can be reached at Freenode (chat.freenode.net) at channel #linaro-security.
Having that said, the activity there is a bit limited, so it is probably not the best place to discuss OP-TEE.

1.4.4 Vulnerability reporting

As part of the TrustedFirmware.org organization, the OP-TEE project uses the security incident procedure outlined
on the TrustedFirmware.org security incident page. We offer two methods for reporting security issues. The first is
the traditional method of sending email to the addresses listed on the Mailing Aliases page. The alternative method is
through GitHub’s GitHub Security Advisories page for OP-TEE.

We prefer the GitHub Security Advisories page because they simplify the sharing and communication of reports.
However, this also requires a GitHub account and we recognize that not everyone can or has the ability to report
security issues via GitHub; therefore, we also accept reports via email.

Note that OP-TEE is a reference implementation for developers and device manufacturers and by being a reference im-
plementation it is not always running a secure device configuration by default (see Platform ports for more information).
Therefore we ask people to think twice whether the security incident report should go to:

a) The OP-TEE project? Is it an issue in the generic code?

b) The chipmaker? Does it only affect a certain platform? Is it a configuration described only under NDA?

c) The ones making the end product? Is the issue only present on a certain device?

In some cases, the OP-TEE team works directly with chipmakers. However, it is not uncommon for products to be
manufactured using OP-TEE without the OP-TEE project’s knowledge. In such instances, we recommend sending the
security issue report to the manufacturer of the final product, who should then, if necessary, contact the OP-TEE project
and/or the chipmaker.

1.4.5 Core Team

The core team consists of TrustedFirmware.org engineers. See also “THE REST” in the OP-TEE MAINTAINERS file,
which oversees the essential activities, such as performing releases, merging patches, and being the first to respond to
security incidents.

1.4. Contact 9

https://developer.trustedfirmware.org/w/collaboration/security_center
https://developer.trustedfirmware.org/w/collaboration/security_center/mailing_aliases
https://github.com/OP-TEE/optee_os/security/advisories
https://github.com/OP-TEE/optee_os/security/advisories
https://github.com/OP-TEE/optee_os/blob/master/MAINTAINERS

OP-TEE Documentation

1.5 License headers

This document defines the format of the copyright and license headers in OP-TEE source files. Such headers shall
comply with the rules described here, which are compatible with the rules adopted by the Linux kernel community.

1.5.1 New source files

• Rule 1.1 Shall contain exactly one SPDX license identifier, which can express a single or multiple licenses (refer
to SPDX for syntax details).

• Rule 1.2 The SPDX license identifier shall be added as a comment line. It shall be the first possible line in the
file which can contain a comment. The comment style shall depend on the file type:

– Rule 1.2.1 C source: // SPDX-License-Identifier: <expression>

– Rule 1.2.2 C header: /* SPDX-License-Identifier: <expression> */

– Rule 1.2.3 Assembly: /* SPDX-License-Identifier: <expression> */

– Rule 1.2.4 Python, shell: # SPDX-License-Identifier: <expression>

• Rule 1.3 Shall contain at least one copyright line

• Rule 1.4 Shall not contain the mention ‘All rights reserved’

• Rule 1.5 Shall not contain any license notice other than the SPDX license identifier

Note that files imported from external projects are not new files. The rules for pre-existing files (below) apply.

1.5.2 Pre-existing or imported files

• Rule 2.1 SPDX license identifiers shall be added according to the license notice(s) in the file and the rules above
(1.1 and 1.2*)

• Rule 2.2 It is recommended that license notices be removed once the corresponding identifier has been added.
Note however that this may only be done by the copyright holder(s) of the file.

• Rule 2.3 Similar to 2.2, and subject to the same conditions, the text: “All rights reserved” shall be removed also.

1.6 Platforms supported

Several platforms are supported. In order to manage slight differences between platforms, a PLATFORM_FLAVOR flag
has been introduced. The PLATFORM and PLATFORM_FLAVOR flags define the whole configuration for a chip the where
the Trusted OS runs. Note that there is also a composite form which makes it possible to append PLATFORM_FLAVOR
directly, by adding a dash in-between the names. The composite form is shown below for the different boards. For
more specific details about build flags etc, please read Configuration and flags. Some platforms have different sub-
maintainers, please refer to the file MAINTAINERS for contact details for various platforms.

Table 1: Platforms officially supported in OP-TEE

Platform Composite PLATFORM flag Publicly available? Maintained?
ARM Juno Board PLATFORM=vexpress-juno Yes Yes
Atmel ATSAMA5D2-XULT Board PLATFORM=sam Yes Yes
Broadcom ns3 PLATFORM=bcm-ns3 No Yes

continues on next page

10 Chapter 1. Getting started

https://spdx.org/licenses/
https://github.com/OP-TEE/optee_os/blob/master/MAINTAINERS
http://www.arm.com/products/tools/development-boards/versatile-express/juno-arm-development-platform.php
http://www.atmel.com/tools/atsama5d2-xult.aspx
https://www.broadcom.com/products/ethernet-connectivity/smartnic/bcm58800

OP-TEE Documentation

Table 1 – continued from previous page
Platform Composite PLATFORM flag Publicly available? Maintained?
DeveloperBox (Socionext Synquacer SC2A11) PLATFORM=synquacer Yes Yes
FSL ls1021a PLATFORM=ls-ls1021atwr Yes Yes
NXP ls1043ardb PLATFORM=ls-ls1043ardb Yes Yes
NXP ls1046ardb PLATFORM=ls-ls1046ardb Yes Yes
NXP ls1012ardb PLATFORM=ls-ls1012ardb Yes Yes
NXP ls1028ardb PLATFORM=ls-ls1028ardb Yes Yes
NXP ls1088ardb PLATFORM=ls-ls1088ardb Yes Yes
NXP ls2088ardb PLATFORM=ls-ls2088ardb Yes Yes
NXP ls1012afrwy PLATFORM=ls-ls1012afrwy Yes Yes
FSL i.MX6 Quad SABRE Lite Board PLATFORM=imx-mx6qsabrelite Yes Yes
FSL i.MX6 Quad SABRE SD Board PLATFORM=imx-mx6qsabresd Yes Yes
SolidRun i.MX6 Quad Hummingboard Edge PLATFORM=imx-mx6qhmbedge Yes Yes
SolidRun i.MX6 Dual Hummingboard Edge PLATFORM=imx-mx6dhmbedge Yes Yes
SolidRun i.MX6 Dual Lite Hummingboard Edge PLATFORM=imx-mx6dlhmbedge Yes Yes
SolidRun i.MX6 Solo Hummingboard Edge PLATFORM=imx-mx6shmbedge Yes Yes
FSL i.MX6 UltraLite EVK Board PLATFORM=imx-mx6ulevk Yes Yes
NXP i.MX7Dual SabreSD Board PLATFORM=imx-mx7dsabresd Yes Yes
NXP i.MX7Solo WaRP7 Board PLATFORM=imx-mx7swarp7 Yes Yes
NXP i.MX8MQEVK Board PLATFORM=imx-imx8mqevk Yes Yes
NXP i.MX8MMEVK Board PLATFORM=imx-imx8mmevk Yes Yes
ARM Foundation FVP PLATFORM=vexpress-fvp Yes Yes
HiSilicon D02 PLATFORM=d02 No Yes
HiSilicon Hi3519AV100 Demo Board PLATFORM=hisilicon-hi3519av100_demo No Yes
HiKey Board (HiSilicon Kirin 620) PLATFORM=hikey` or `PLATFORM=hikey-hikey Yes Yes
HiKey960 Board (HiSilicon Kirin 960) PLATFORM=hikey-hikey960 Yes Yes
Marvell ARMADA 7K Family PLATFORM=marvell-armada7k8k Yes Yes
Marvell ARMADA 8K Family PLATFORM=marvell-armada7k8k Yes Yes
Marvell ARMADA 3700 Family PLATFORM=marvell-armada3700 Yes Yes
MediaTek MT8173 EVB Board PLATFORM=mediatek-mt8173 No Yes
Poplar Board (HiSilicon Hi3798C V200) PLATFORM=poplar Yes Yes
QEMU PLATFORM=vexpress-qemu_virt Yes Yes
QEMUv8 PLATFORM=vexpress-qemu_armv8a Yes Yes
Raspberry Pi 3 PLATFORM=rpi3 Yes Yes
Renesas RCAR PLATFORM=rcar No Yes
Renesas RZ/G PLATFORM=rzg Yes Yes
Rockchip PX30 PLATFORM=rockchip-px30 No Yes
Rockchip RK322X PLATFORM=rockchip-rk322x No Yes
Rockchip RK3399 PLATFORM=rockchip-rk3399 Yes Yes
STMicroelectronics b2260 - h410 (96boards fmt) PLATFORM=stm-b2260 No Yes
STMicroelectronics b2120 - h310 / h410 PLATFORM=stm-cannes No Yes
STMicroelectronics STM32MP1 series PLATFORM=stm32mp1 Yes Yes
Allwinner A64 Pine64 Board PLATFORM=sunxi-sun50i_a64 Yes Yes
Texas Instruments AM65x PLATFORM=k3-am65x Yes Yes
Texas Instruments DRA7xx PLATFORM=ti-dra7xx Yes Yes
Texas Instruments AM57xx PLATFORM=ti-am57xx Yes Yes
Texas Instruments AM43xx PLATFORM=ti-am43xx Yes Yes
AMD/Xilinx Versal ACAP PLATFORM=versal Yes Yes
Xilinx Zynq 7000 ZC702 PLATFORM=zynq7k-zc702 Yes No (v2.3.0)
Xilinx Zynq UltraScale+ MPSOC PLATFORM=zynqmp-zcu102 Yes No (v2.4.0)
Spreadtrum SC9860 PLATFORM=sprd-sc9860 No No (v2.1.0)

1.6. Platforms supported 11

https://www.96boards.org/product/developerbox/
http://www.freescale.com/tools/embedded-software-and-tools/hardware-development-tools/tower-development-boards/mcu-and-processor-modules/powerquicc-and-qoriq-modules/qoriq-ls1021a-tower-system-module:TWR-LS1021A?lang_cd=en
http://www.nxp.com/products/microcontrollers-and-processors/power-architecture-processors/qoriq-platforms/developer-resources/qoriq-ls1043a-reference-design-board:LS1043A-RDB
http://www.nxp.com/products/microcontrollers-and-processors/power-architecture-processors/qoriq-platforms/developer-resources/qoriq-ls1046a-reference-design-board:LS1046A-RDB
http://www.nxp.com/products/microcontrollers-and-processors/power-architecture-processors/qoriq-platforms/developer-resources/qoriq-ls1012a-reference-design-board:LS1012A-RDB
https://www.nxp.com/pages/design/qoriq-developer-resources/ls1028a-reference-design-board:LS1028ARDB
http://www.nxp.com/products/microcontrollers-and-processors/power-architecture-processors/qoriq-platforms/developer-resources/qoriq-ls1088a-reference-design-board:LS1088A-RDB
http://www.nxp.com/products/microcontrollers-and-processors/power-architecture-processors/qoriq-platforms/developer-resources/qoriq-ls2088a-reference-design-board:LS2088A-RDB
https://www.nxp.com/support/developer-resources/software-development-tools/qoriq-developer-resources/layerscape-frwy-ls1012a-board:FRWY-LS1012A
https://boundarydevices.com/product/sabre-lite-imx6-sbc/
http://www.nxp.com/products/software-and-tools/hardware-development-tools/sabre-development-system/sabre-board-for-smart-devices-based-on-the-i.mx-6quad-applications-processors:RD-IMX6Q-SABRE
https://www.solid-run.com/product/hummingboard-edge-imx6q-wa-h/
https://www.solid-run.com/product/hummingboard-edge-imx6d-wa-h/
https://www.solid-run.com/product/hummingboard-edge-imx6dl-0c-h/
https://www.solid-run.com/product/hummingboard-edge-imx6s-wa-h/
http://www.freescale.com/products/arm-processors/i.mx-applications-processors-based-on-arm-cores/i.mx-6-processors/i.mx6qp/i.mx6ultralite-evaluation-kit:MCIMX6UL-EVK
http://www.nxp.com/products/software-and-tools/hardware-development-tools/sabre-development-system/sabre-board-for-smart-devices-based-on-the-i.mx-7dual-applications-processors:MCIMX7SABRE
http://www.nxp.com/products/developer-resources/reference-designs/warp7-next-generation-iot-and-wearable-development-platform:WARP7
https://www.nxp.com/support/developer-resources/run-time-software/i.mx-developer-resources/evaluation-kit-for-the-i.mx-8m-applications-processor:MCIMX8M-EVK
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/i.mx-applications-processors/i.mx-8-processors/i.mx-8m-mini-family-arm-cortex-a53-cortex-m4-audio-voice-video:i.MX8MMINI?lang=en&lang_cd=en&
https://developer.arm.com/products/system-design/fixed-virtual-platforms
http://open-estuary.org/d02-2
http://www.hisilicon.com/en/Products/ProductList/Surveillance
https://www.96boards.org/product/hikey
https://www.96boards.org/product/hikey960
http://www.marvell.com/embedded-processors/armada-70xx/
http://www.marvell.com/embedded-processors/armada-80xx/
http://www.marvell.com/embedded-processors/armada-3700/
https://www.mediatek.com/products/tablets/mt8173
https://www.96boards.org/product/poplar
http://wiki.qemu.org/Main_Page
http://wiki.qemu.org/Main_Page
https://www.raspberrypi.org/products/raspberry-pi-3-model-b
https://www.renesas.com/en-sg/solutions/automotive/products/rcar-h3.html
https://www.renesas.com/sg/en/products/microcontrollers-microprocessors/rz-cortex-a-mpus/rzg-linux-platform/rzg-marketplace/board-solutions
http://rock-chips.com/a/en/products/rkpower/2018/0709/913.html
http://www.rock-chips.com/a/en/products/RK32_Series/2016/1109/799.html
http://rock-chips.com/a/en/products/RK33_Series/2016/0419/758.html
http://www.st.com/web/en/catalog/mmc/FM131/SC999/SS1628/PF258776
http://www.st.com/web/en/catalog/mmc/FM131/SC999/SS1628/PF258776
http://www.st.com/stm32mp1
https://www.pine64.org/
http://www.ti.com/processors/sitara-arm/am6x-cortex-a53-r5/overview.html
http://www.ti.com/processors/automotive-processors/drax-infotainment-socs/overview.html
http://www.ti.com/processors/sitara/arm-cortex-a15/am57x/overview.html
http://www.ti.com/processors/sitara/arm-cortex-a9/am438x/overview.html
https://www.xilinx.com/products/silicon-devices/acap/versal.html
http://www.xilinx.com/products/boards-and-kits/ek-z7-zc702-g.html
http://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
http://spreadtrum.com/en/SC9860GV.html

OP-TEE Documentation

1.7 Presentations

Below are presentations coming from engineers working with OP-TEE in one or another way. Note that the older they
are, the less relevant is the information in them. So do not trust blindly what was said back in the days, cross check
with latest version to understand whether things have changed or not.

The links are sorted in chronological order, newest first and oldest at the end.

• LVC21F
– Demo - PKCS#11 in OP-TEE (video)

• LVC21
– LVC21-118 - ASLR in OP-TEE (slides, video)

– LVC21-201 - Security Working Group (SWG) Lightning Talk (slides)

– LVC21-215 - PKCS#11 in OP-TEE (slides, video)

– LVC21-305 - OP-TEE as a Secure Partition running on SPM using ARMv8.4-A SEL2 feature (slides,
video)

– LVC21-311 - Virtualization for OP-TEE (slides, video)

• LVC20
– LVC20-112 - PSA Secure Partitions in OP-TEE (slides, video)

– LVC20-118 - SCMI server in TEE (slides, video)

– LVC20-204 - Encrypted firmwares and how to bake them right (slides, video)

• SAN19
– SAN19-107 - Secure Data Path on Linux and NXP i.MX 8M (slides, video)

– SAN19-207 - SCMI server in secure world (slides, video)

– SAN19-225 - Fuzzing embedded (trusted) operating systems using AFL (slides, video)

– SAN19-226 - Enabling AOSP FBE for OP-TEE Keymaster (slides, video)

– SAN19-411 - Runtime Secure Keys in OP-TEE (slides, video)

– SAN19-413 - TEE based Trusted Keys in Linux (slides, video)

– SAN19-507 - HDCP and OP-TEE (slides, video)

• BKK19
– BKK19-419 - Debugging with OP-TEE (slides, video)

– BKK19-415 - OP-TEE: Shared memory between TAs (slides, video)

– BKK19-403 - Using DTB overlays in OP-TEE (slides, video)

– BKK19-215 - TPM in TEE (slides, video)

– BKK19-117 - Security WG Lightning talks (slides, video)

• YVR18
– YVR18-414 - Keymaster and Gatekeeper (slides, video)

– YVR18-117 - SWG updates since HKG18 (slides, video)

• HKG18

12 Chapter 1. Getting started

https://static.linaro.org/connect/lvc21f/videos/LVC21F-demo-pkcs11-demo-v2.mp4
https://static.linaro.org/connect/lvc21/presentations/lvc21-118.pdf
https://static.linaro.org/connect/lvc21/videos/lvc21-118.mp4
https://static.linaro.org/connect/lvc21/presentations/lvc21-201.pdf
https://static.linaro.org/connect/lvc21/presentations/lvc21-215.pdf
https://static.linaro.org/connect/lvc21/videos/lvc21-215.mp4
https://static.linaro.org/connect/lvc21/presentations/lvc21-305.pdf
https://static.linaro.org/connect/lvc21/videos/lvc21-305.mp4
https://static.linaro.org/connect/lvc21/presentations/lvc21-311.pdf
https://static.linaro.org/connect/lvc21/videos/lvc21-311.mp4
https://static.linaro.org/connect/lvc20/presentations/LVC20-112-0.pdf
https://static.linaro.org/connect/lvc20/videos/lvc20-112.mp4
https://static.linaro.org/connect/lvc20/presentations/LVC20-118-0.pdf
https://static.linaro.org/connect/lvc20/videos/lvc20-118.mp4
https://static.linaro.org/connect/lvc20/presentations/LVC20-204-0.pdf
https://static.linaro.org/connect/lvc20/videos/lvc20-204.mp4
https://static.linaro.org/connect/san19/presentations/san19-107.pdf
https://static.linaro.org/connect/san19/videos/san19-107.mp4
https://static.linaro.org/connect/san19/presentations/san19-207.pdf
https://static.linaro.org/connect/san19/videos/san19-207.mp4
https://static.linaro.org/connect/san19/presentations/san19-225.pdf
https://static.linaro.org/connect/san19/videos/san19-225.mp4
https://static.linaro.org/connect/san19/presentations/san19-226.pdf
https://static.linaro.org/connect/san19/videos/san19-226.mp4
https://static.linaro.org/connect/san19/presentations/san19-411.pdf
https://static.linaro.org/connect/san19/videos/san19-411.mp4
https://static.linaro.org/connect/san19/presentations/san19-413.pdf
https://static.linaro.org/connect/san19/videos/san19-413.mp4
https://static.linaro.org/connect/san19/presentations/san19-507.pdf
https://static.linaro.org/connect/san19/videos/san19-507.mp4
https://static.linaro.org/connect/bkk19/presentations/bkk19-419.pdf
https://static.linaro.org/connect/bkk19/videos/bkk19-419.mp4
https://static.linaro.org/connect/bkk19/presentations/bkk19-415.pdf
https://youtu.be/L-AfhBzxWTU
https://static.linaro.org/connect/bkk19/presentations/bkk19-403.pdf
https://youtu.be/WFH4KGoToHI
https://static.linaro.org/connect/bkk19/presentations/bkk19-215.pdf
https://youtu.be/-uR_oUp0wPE
https://static.linaro.org/connect/bkk19/presentations/bkk19-117.pdf
https://youtu.be/k6bmQrBe7sc
https://static.linaro.org/connect/yvr18/presentations/yvr18-414.pdf
https://youtu.be/UR3io1uCkdo
https://static.linaro.org/connect/yvr18/presentations/yvr18-117.pdf
https://youtu.be/FN4J2gB2Kns

OP-TEE Documentation

– HKG18-402 - Build secure key management services in OP-TEE (slides, video)

• SFO17
– SFO17-309 - Secure storage updates (slides, video)

• Webinar
– TEE Linux kernel support and open source security (slides, video)

• BUD17
– BUD17-416 - Benchmark and profiling in OP TEE (slides, video)

– BUD17-400 - Secure Data Path with OPTEE (slides, video)

• LAS16
– LAS16-504 - Secure Storage updates in OP-TEE (slides, video)

– LAS16-406 - Android Widevine on OP-TEE (slides, video)

– LAS16-111 - Easing Access to ARM TrustZone OP TEE and Raspberry Pi 3 (slides, video)

• BKK16
– BKK16-201 - PlayReady OP-TEE Integration with Secure Video Path (slides, video)

– BKK16-110 - A Gentle Introduction to Trusted Execution and OP-TEE (slides)

• SFO15
– SFO15-503 - Secure storage in OP-TEE (slides, video)

– SFO15-205 - OP-TEE Content Decryption with Microsoft PlayReady on ARM TrustZone (slides,
video)

– SFO15-200 - TEE kernel driver (slides, video)

• HKG15
– HKG15-311 - OP-TEE for Beginners and Porting Review (slides, video)

– HKG15-307 - OP-TEE pager (slides, video)

• LCU14
– LCU14-306 - OP-TEE Future Enhancements (slides)

– LCU14-302 - How to port OP-TEE to another platform (slides, video)

– LCU14-107 - OP-TEE on ARMv8-A (slides, video)

– LCU14-103 - How to create and run Trusted Applications on OP-TEE (slides, video)

• LCA14
– LCA14-502 - The way to a generic TrustZone solution (slides)

– LCA14-418 - Testing a secure framework (slides)

1.7. Presentations 13

https://www.slideshare.net/linaroorg/hkg18402-build-secure-key-management-services-in-optee
http://static.linaro.org/connect/hkg18/videos/hkg18-402.mp4
https://www.slideshare.net/linaroorg/secure-storage-updates-sfo17309
https://youtu.be/k61PiuFrc_U
https://www.slideshare.net/linaroorg/tee-kernel-support-is-now-upstream-what-this-means-for-open-source-security-76943254
https://youtu.be/kk3_DUMJrTI
http://static.linaro.org/connect/bud17/Presentations/BUD17-416%20-%20Benchmark%20and%20Profiling%20in%20OP-TEE.pdf
https://youtu.be/gr6AxvqfDds
https://www.slideshare.net/linaroorg/bud17400-secure-data-path-with-optee
https://youtu.be/6JdzsWZq4Ls
http://static.linaro.org/connect/las16/Presentations/Friday/LAS16-504%20-%20Secure%20Storage%20updates%20in%20OP-TEE.pdf
https://youtu.be/9OEt4aG6V5w
http://static.linaro.org/connect/las16/Presentations/Thursday/LAS16-406%20-%20Android%20Widevine%20on%20OP-TEE.pdf
https://youtu.be/LEJqTXVs9N8
https://www.slideshare.net/96Boards/las16-111-raspberry-pi3-optee-and-jtag-debugging
https://youtu.be/3MnLrHoQcyI
https://www.slideshare.net/linaroorg/bkk16201-play-ready-optee-integration-with-secure-video-path-lhg1
https://youtu.be/04iRIWvxCiw
https://www.slideshare.net/linaroorg/bkk16110-a-gentle-introduction-to-trusted-execution-and-optee
https://www.slideshare.net/linaroorg/sfo15503-secure-storage-in-optee
https://youtu.be/pChEdObYLRM
https://www.slideshare.net/linaroorg/sfo15205-optee-content-decryption-with-microsoft-playready-on-arm-53111683
https://youtu.be/defbtpsw6h8
https://www.slideshare.net/linaroorg/sfo15200-linux-kernel-generic-tee-driver
https://youtu.be/BhLndLUQamM
https://www.slideshare.net/linaroorg/hkg15311-optee-for-beginners-and-porting-review
https://youtu.be/Fksx4-bpHRY
https://www.slideshare.net/linaroorg/hkg15307-optee-paging
https://youtu.be/hCYjlBPxEbY
https://www.slideshare.net/linaroorg/lcu14-306-optee-future-enhancements
https://www.slideshare.net/linaroorg/lcu14-302-how-to-port-optee-to-another-platform
https://youtu.be/QgaGJow7hws
https://www.slideshare.net/linaroorg/lcu14-107-optee-on-ar-mv8
https://youtu.be/JViplz-ah9M
https://www.slideshare.net/linaroorg/lcu14103-how-to-create-and-run-trusted-applications-on-optee
https://youtu.be/6fmwhqrOmpc
https://www.slideshare.net/linaroorg/lca14-502-thewaytoagenerictrustzonesolution
https://www.slideshare.net/linaroorg/lca14-lca14418-testing-a-secure-framework

OP-TEE Documentation

1.8 Releases

1.8.1 Cadence

New versions of OP-TEE are released four times a year, i.e., quarterly releases.

Release dates

Starting from version 3.10.0 we track the old and also show the releases being planned for the future in the table below.
The dates will tell whether it is an old, upcoming or future release.

Version Release date
OP-TEE 4.4.0 18/Oct/24
OP-TEE 4.3.0 12/Jul/24
OP-TEE 4.2.0 12/Apr/24
OP-TEE 4.1.0 19/Jan/24
OP-TEE 4.0.0 20/Oct/23
OP-TEE 3.22.0 14/Jul/23
OP-TEE 3.21.0 14/Apr/23
OP-TEE 3.20.0 20/Jan/23
OP-TEE 3.19.0 14/Oct/22
OP-TEE 3.18.0 15/July/22
OP-TEE 3.17.0 15/Apr/22
OP-TEE 3.16.0 28/Jan/22
OP-TEE 3.15.0 18/Oct/21
OP-TEE 3.14.0 16/July/21
OP-TEE 3.13.0 30/Apr/21
OP-TEE 3.12.0 20/Jan/21
OP-TEE 3.11.0 16/Oct/20
OP-TEE 3.10.0 21/Aug/20

1.8.2 Changelog

The changelog is stored in the optee_os git (CHANGELOG.md). There you can see what has been done between the
different releases in terms of commits as well as pull requests.

1.8.3 Versioning schema

OP-TEE follows Semantic Versioning 2.0.0. What that means in practice is well described at the link just shown.

14 Chapter 1. Getting started

https://github.com/OP-TEE/optee_os/blob/master/CHANGELOG.md
https://semver.org

OP-TEE Documentation

1.8.4 Release procedure

There are certain steps that needs to be done when making a release. This checklist here serves as guidance to the one
in charge of making a new release. Roughly start with this 2-3 weeks before the targeted release date.

1.8. Releases 15

OP-TEE Documentation

tl;dr

Table 2: Short version of the OP-TEE release procedure

When (Tmi-
nus)

Action Ex-
am-
ple

3w Create release pull request PR#3099
3w Inform maintainers about upcoming release
1w Increment the revision number in mk/config.mk CFG_OPTEE_REVISION_MAJOR

?
=
3
CFG_OPTEE_REVISION_MINOR
?
=
x

1w Create release candidate tag in optee_* + build.git git
tag
-
a
3.x.y-
rc1
-
m
“3.x.y-
rc1”

1w Let maintainers know about the release candidate tag
1w Test platform builds / devices
Release day Update CHANGELOG.md changelog

ex-
am-
ple

Release day Collect/merge Tested-By tags com-
mit
ex-
am-
ple

Release day Create release tag in optee_* + build.git + linux.git

git
tag
-
a
3.x.y
-
m
“3.x.y”

git
tag
-
a
optee-
3.x.y
-
m
“optee-
3.x.y”
#
(Linux)

Release day Create release branch in manifest git
check-
out
-
b
3.x.y
ori-
gin/master

Release day Update manifest XML-files 3.6.0
sta-
ble

Release day Inform maintainers and stakeholder that release has been completed.

16 Chapter 1. Getting started

https://github.com/OP-TEE/optee_os/pull/3099
https://github.com/OP-TEE/optee_os/blob/master/mk/config.mk
https://github.com/OP-TEE/optee_os/blob/master/CHANGELOG.md
https://github.com/OP-TEE/optee_os/commit/f398d4923da875370149ffee45c963d7adb41495#diff-4ac32a78649ca5bdd8e0ba38b7006a1e
https://github.com/OP-TEE/optee_os/commit/f398d4923da875370149ffee45c963d7adb41495#diff-4ac32a78649ca5bdd8e0ba38b7006a1e
https://github.com/OP-TEE/optee_os/commit/f398d4923da875370149ffee45c963d7adb41495#diff-4ac32a78649ca5bdd8e0ba38b7006a1e
https://github.com/OP-TEE/optee_os/commit/f398d4923da875370149ffee45c963d7adb41495#diff-4ac32a78649ca5bdd8e0ba38b7006a1e
https://github.com/OP-TEE/optee_os/commit/f398d4923da875370149ffee45c963d7adb41495
https://github.com/OP-TEE/optee_os/commit/f398d4923da875370149ffee45c963d7adb41495
https://github.com/OP-TEE/optee_os/commit/f398d4923da875370149ffee45c963d7adb41495
https://github.com/OP-TEE/optee_os/commit/f398d4923da875370149ffee45c963d7adb41495
https://github.com/OP-TEE/optee_os/commit/f398d4923da875370149ffee45c963d7adb41495
https://github.com/OP-TEE/manifest/commit/f181e959c21baddce82552104daf81a25f8fd898
https://github.com/OP-TEE/manifest/commit/f181e959c21baddce82552104daf81a25f8fd898
https://github.com/OP-TEE/manifest/commit/f181e959c21baddce82552104daf81a25f8fd898

OP-TEE Documentation

Long version

1. Create a “release pull request” at GitHub ought to collect Tested-By tags from various maintainers.
As an example, see PR#3099.

2. Send email to all maintainers to let them know about the upcoming release. The addresses to the
maintainers can be found in the MAINTAINERS file.

Hint: With this command you will get all email addresses

$ scripts/get_maintainer.py --release-to

3. Increment the revision number in mk/config.mk: CFG_OPTEE_REVISION_MAJOR and
CFG_OPTEE_REVISION_MINOR. These values are made available to TAs and to the Normal
World driver at boot time.

4. Create a release candidate (RC) tag (annotated tag, i.e., git tag -a 3.x.y-rc1 -m "3.x.
y-rc1") in the following gits optee_* and build.git. One way to do it is like this

$ export VER=3.x.y-rc1
$ for d in optee* build; do (cd $d; git tag -a $VER -m $VER); done
$ for d in optee* build; do (cd $d; git push origin $VER); done

5. Send a follow up email to all maintainers to let them know that there is a release tag ready to be tested
on their devices for the platforms that they are maintaining.

6. In case major regressions are found, then fix those and create a another release candidate tag (i.e.,
repeat step 3 and 4 until there are no remaining issues left).

7. On release day: Update CHANGELOG.md see this changelog example to see how that should look
like.

8. Collect all tags (Tested-By etc) from maintainers and use those in the commit message, for an
example see this commit example.

9. Create a release tag (annotated tag, i.e., git tag -a 3.x.y -m "3.x.y") in the following gits
optee_* and build.git. Tag the tip of the optee branch in linux.git, the name of the tag
has to be prefixed with optee- to avoid confusions. For instance: git tag -a optee-3.x.y -m
"optee-3.x.y".

Hint: You can use the same steps as in step 4, when creating the tags.

10. Create a new branch in manifest from master where the name corresponds to the release you are
preparing. I.e., git checkout -b 3.x.y origin/master.

11. Update all manifest XML-files in the manifest git, so they refer to the tag in the release we are working
with (see 3.6.0 stable commit as an example). This can be done with the make_stable.sh script. Now
it is also time to push the new branch and tag it. Example:

$ export VER=3.x.y
$ cd manifest
$./make_stable.sh -o -r $VER
$ git diff # make sure everything looks good
$ git commit -a -m "OP-TEE $VER stable"
$ git remote add upstream git@github.com:OP-TEE/manifest

(continues on next page)

1.8. Releases 17

https://github.com/OP-TEE/optee_os/pull/3099
https://github.com/OP-TEE/optee_os/blob/master/MAINTAINERS
https://github.com/OP-TEE/optee_os/blob/master/CHANGELOG.md
https://github.com/OP-TEE/optee_os/commit/f398d4923da875370149ffee45c963d7adb41495#diff-4ac32a78649ca5bdd8e0ba38b7006a1e
https://github.com/OP-TEE/optee_os/commit/f398d4923da875370149ffee45c963d7adb41495
https://github.com/OP-TEE/manifest/commit/f181e959c21baddce82552104daf81a25f8fd898
https://github.com/OP-TEE/manifest/blob/master/make_stable.sh

OP-TEE Documentation

(continued from previous page)

$ git push upstream
$ git tag -a $VER -m $VER
$ git push upstream tag $VER

12. Send a last email to maintainers and other stakeholders telling that the release has been completed.

18 Chapter 1. Getting started

CHAPTER

TWO

ARCHITECTURE

2.1 Core

2.1.1 Interrupt handling

This section describes how optee_os handles switches of world execution context based on SMC exceptions and inter-
rupt notifications. Interrupt notifications are IRQ/FIQ exceptions which may also imply switching of world execution
context: normal world to secure world, or secure world to normal world.

Use cases of world context switch

This section lists all the cases where OP-TEE OS is involved in world context switches. Optee_os executes in the secure
world. World switch is done by the core’s secure monitor level/mode, referred below as the Monitor.

When the normal world invokes the secure world, the normal world executes a SMC instruction. The SMC exception
is always trapped by the Monitor. If the related service targets the trusted OS, the Monitor will switch to OP-TEE OS
world execution. When the secure world returns to the normal world, OP-TEE OS executes a SMC that is caught by
the Monitor which switches back to the normal world.

When a secure interrupt is signaled by the Arm GIC, it shall reach the OP-TEE OS interrupt exception vector. If the
secure world is executing, OP-TEE OS will handle interrupt straight from its exception vector. If the normal world is
executing when the secure interrupt raises, the Monitor vector must handle the exception and invoke OP-TEE OS to
serve the interrupt.

When a non-secure interrupt is signaled by the Arm GIC, it shall reach the normal world interrupt exception vector.
If the normal world is executing, it will handle straight the exception from its exception vector. If the secure world
is executing when the non-secure interrupt raises, OP-TEE OS will temporarily return back to normal world via the
Monitor to let normal world serve the interrupt.

Core exception vectors

Monitor vector is VBAR_EL3 in AArch64 and MVBAR in Armv7-A/AArch32. Monitor can be reached while normal
world or secure world is executing. The executing secure state is known to the Monitor through the SCR_NS.

Monitor can be reached from a SMC exception, an IRQ or FIQ exception (so-called interrupts) and from asynchronous
aborts. Obviously monitor aborts (data, prefetch, undef) are local to the Monitor execution.

The Monitor can be external to OP-TEE OS (case CFG_WITH_ARM_TRUSTED_FW=y). If not, provides a local secure
monitor core/arch/arm/sm. Armv7-A platforms should use the OP-TEE OS secure monitor. Armv8-A platforms
are likely to rely on an Trusted Firmware A.

19

https://github.com/ARM-software/arm-trusted-firmware

OP-TEE Documentation

When executing outside the Monitor, the system is executing either in the normal world (SCR_NS=1) or in the secure
world (SCR_NS=0). Each world owns its own exception vector table (state vector):

• VBAR_EL2 or VBAR_EL1 non-secure or VBAR_EL1 secure for AArch64.

• HVBAR or VBAR non-secure or VBAR secure for Armv7-A and AArch32.

All SMC exceptions are trapped in the Monitor vector. IRQ/FIQ exceptions can be trapped either in the Monitor vector
or in the state vector of the executing world.

When the normal world is executing, the system is configured to route:

• secure interrupts to the Monitor that will forward to OP-TEE OS

• non-secure interrupts to the executing world exception vector.

When the secure world is executing, the system is configured to route:

• secure and non-secure interrupts to the executing OP-TEE OS exception vector. OP-TEE OS shall forward the
non-secure interrupts to the normal world.

Optee_os non-secure interrupts are always trapped in the state vector of the executing world. This is reflected by a
static value of SCR_(IRQ|FIQ).

Native and foreign interrupts

Two types of interrupt are defined from OP-TEE OS point of view.

• Native interrupt - The interrupt handled by OP-TEE OS, secure interrupts targetting S-EL1 or secure privileged
mode

• Foreign interrupt - The interrupt not handled by OP-TEE OS, non-secure interrupts targetting normal world or
secure interrupts targetting EL3.

For Arm GICv2 mode, a native interrupt is signalled with a FIQ and a foreign interrupt is signalled with an IRQ. For
Arm GICv3 mode, a foreign interrupts is signalled as a FIQ which could be handled by either secure world (aarch32
Monitor mode or aarch64 EL3) or normal world.

Arm GICv3 mode can be enabled by setting CFG_ARM_GICV3=y. Native interrupts must be securely routed to OP-TEE
OS. Foreign interrupts, when trapped during secure world execution might need to be efficiently routed to the normal
world.

IRQ and FIQ keeps their meaning in normal world so for clarity we will keep using those names in the normal world
context.

Normal World invokes OP-TEE OS using SMC

Entering the Secure Monitor
The monitor manages all entries and exits of secure world. To enter secure world from normal world the monitor
saves the state of normal world (general purpose registers and system registers which are not banked) and restores the
previous state of secure world. Then a return from exception is performed and the restored secure state is resumed.
Exit from secure world to normal world is the reverse.

Some general purpose registers are not saved and restored on entry and exit, those are used to pass parameters between
secure and normal world (see ARM_DEN0028A_SMC_Calling_Convention for details).

Entry and exit of Trusted OS
On entry and exit of Trusted OS each CPU is uses a separate entry stack and runs with IRQ and FIQ masked. SMCs
are categorised in two flavors: fast and yielding.

20 Chapter 2. Architecture

http://infocenter.arm.com/help/topic/com.arm.doc.den0028b/ARM_DEN0028B_SMC_Calling_Convention.pdf

OP-TEE Documentation

• For fast SMCs, OP-TEE OS will execute on the entry stack with IRQ/FIQ masked until the execution returns to
normal world.

• For yielding SMCs, OP-TEE OS will at some point execute the requested service with interrupts unmasked.
In order to handle interrupts, mainly forwarding of foreign interrupts, OP-TEE OS assigns a trusted thread
(core/arch/arm/kernel/thread.c) to the SMC request. The trusted thread stores the execution context of the re-
quested service. This context can be suspended and resumed as the requested service executes and is interrupted.
The trusted thread is released only once the service execution returns with a completion status.

For yielding SMCs, OP-TEE OS allocates or resumes a trusted thread then unmasks the IRQ and FIQ lines.
When the OP-TEE OS needs to invoke the normal world from a foreign interrupt or a remote service call, OP-
TEE OS masks IRQ and FIQ and suspends the trusted thread. When suspending, OP-TEE OS gets back to the
entry stack.

• Both fast and yielding SMCs end on the entry stack with IRQ and FIQ masked and OP-TEE OS invokes the
Monitor through a SMC to return to the normal world.

Deliver non-secure interrupts to Normal World

Forward a Foreign Interrupt from Secure World to Normal World
When a foreign interrupt is received in secure world as an IRQ or FIQ exception then secure world:

1. Saves trusted thread context (entire state of all processor modes for Armv7-A)

2. Masks all interrupts (IRQ and FIQ)

3. Switches to entry stack

4. Issues an SMC with a value to indicates to normal world that an IRQ has been detected and last SMC call should
be continued

The monitor restores normal world context with a return code indicating that an IRQ is about to be delivered. Normal
world issues a new SMC indicating that it should continue last SMC.

The monitor restores secure world context which locates the previously saved context and checks that it is a return
from a foreign interrupt that is requested before restoring the context and lets the secure world foreign interrupt handler
return from exception where the execution would be resumed.

Note that the monitor itself does not know or care that it has just forwarded a foreign interrupt to normal world. The
bookkeeping is done in the trusted thread handling in OP-TEE OS. Normal world is responsible to decide when the
secure world thread should resume execution (for details, see Thread handling).

Deliver a foreign interrupt to normal world when ``SCR_NS`` is set
Since SCR_IRQ is cleared, an IRQ will be delivered using the exception vector (VBAR) in the normal world. The IRQ
is received as any other exception by normal world, the monitor and the OP-TEE OS are not involved at all.

Deliver secure interrupts to Secure World

A secure (foreign) interrupt can be received during two different states, either in normal world (SCR_NS is set) or in
secure world (SCR_NS is cleared). When the secure monitor is active (Armv8-A EL3 or Armv7-A Monitor mode) FIQ
and IRQ are masked. FIQ reception in the two different states is described below.

Deliver secure interrupt to secure world when SCR_NS is set
When the monitor traps a secure interrupt it:

1. Saves normal world context and restores secure world context from last secure world exit (which will have IRQ
and FIQ blocked)

2.1. Core 21

https://github.com/OP-TEE/optee_os/blob/master/core/arch/arm/kernel/thread.c

OP-TEE Documentation

Fig. 1: SMC entry to secure world

22 Chapter 2. Architecture

OP-TEE Documentation

Fig. 2: Foreign interrupt received in secure world and forwarded to normal world

2.1. Core 23

OP-TEE Documentation

2. Clears SCR_FIQ when clearing SCR_NS

3. Does a return from exception into OP-TEE OS via the secure interrupt entry point

4. OP-TEE OS handles the native interrupt directly in the entry point

5. OP-TEE OS issues an SMC to return to normal world

6. The monitor saves the secure world context and restores the normal world context

7. Does a return from exception into the restored context

Fig. 3: Secure interrupt received when SCR_NS is set

Deliver FIQ to secure world when SCR_NS is cleared

24 Chapter 2. Architecture

OP-TEE Documentation

Fig. 4: FIQ received while processing an IRQ forwarded from secure world
2.1. Core 25

OP-TEE Documentation

Trusted thread scheduling

Trusted thread for standard services
OP-TEE yielding services are carried through standard SMC. Execution of these services can be interrupted by foreign
interrupts. To suspend and restore the service execution, optee_os assigns a trusted thread at yielding SMC entry.

The trusted thread terminates when optee_os returns to the normal world with a service completion status.

A trusted thread execution can be interrupted by a native interrupt. In this case the native interrupt is handled by the
interrupt exception handlers and once served, optee_os returns to the execution trusted thread.

A trusted thread execution can be interrupted by a foreign interrupt. In this case, optee_os suspends the trusted thread
and invokes the normal world through the Monitor (optee_os so-called RPC services). The trusted threads will resume
only once normal world invokes the optee_os with the RPC service status.

A trusted thread execution can lead optee_os to invoke a service in normal world: access a file, get the REE current
time, etc. The trusted thread is first suspended then resumed during remote service execution.

Scheduling considerations
When a trusted thread is interrupted by a foreign interrupt and when optee_os invokes a normal world service, the
normal world gets the opportunity to reschedule the running applications. The trusted thread will resume only once the
client application is scheduled back. Thus, a trusted thread execution follows the scheduling of the normal world caller
context.

Optee_os does not implement any thread scheduling. Each trusted thread is expected to track a service that is invoked
from the normal world and should return to it with an execution status.

The OP-TEE Linux driver (as implemented in drivers/tee/optee since Linux kernel 4.12) is designed so that the Linux
thread invoking OP-TEE gets assigned a trusted thread on TEE side. The execution of the trusted thread is tied to the
execution of the caller Linux thread which is under the Linux kernel scheduling decision. This means trusted threads
are scheduled by the Linux kernel.

Trusted thread constraints
TEE core handles a static number of trusted threads, see CFG_NUM_THREADS.

Trusted threads are expensive on memory constrained system, mainly because of the execution stack size.

On SMP systems, optee_os can execute several trusted threads in parallel if the normal world supports scheduling of
processes. Even on UP systems, supporting several trusted threads in optee_os helps normal world scheduler to be
efficient.

Core handlers for native interrupts

OP-TEE core provides methods for device drivers to setup and register handler functions for native interrupt controller
drivers (see:ref:native_foreign_irqs). Interrupt handlers can be nested as when an interrupt controller exposes interrupts
which signaling is multiplexed on an interrupt controlled by a parent interrupt controller.

Interrupt controllers are represented by an instance of struct itr_chip. An interrupt controller exposes a given
number of interrupts, each identified by an index from 0 to N-1 where N is the total number of interrupts exposed by
that controller. In the literature, an interrupt index identifier is called interrupt number.

Interrupt management API functions
Interrupt management resources are declared in header file interrupt.h. Interrupt consumers main API functions are:

• interrupt_enable() and interrupt_disable() to respectively enable or disable an interrupt.

26 Chapter 2. Architecture

https://github.com/torvalds/linux/tree/master/drivers/tee/optee
https://github.com/OP-TEE/optee_os/blob/master/core/include/kernel/interrupt.h

OP-TEE Documentation

• interrupt_mask() and interrupt_unmask() to respectively mask or unmask an interrupt. Masking of
an enabled interrupt temporarily disables the interrupt while unmasking enables a previously masked inter-
rupt. interrupt_mask() and interrupt_unmask() are allowed to be called from an interrupt context, but
interrupt_enable() and interrupt_disable() not so.

• interrupt_configure() to configure an interrupt detection mode and priority.

• interrupt_add_handler() to configure an interrupt and register an interrupt handler function, see below.

• interrupt_remove_handler() to unregister an interrupt handler function from an interrupt.

Interrupt controller drivers
An interrupt controller instance, named chip (struct itr_chip) defines operation function handlers for management
of the interrupt(s) it controls. An interrupt chip driver must provide operation handler functions .add, .mask, .unmask,
.enable and .disable. There are other operation handler functions that are optional, as for example .rasie_pi,
.raise_sgi and .set_priority.

An interrupt chip driver registers the controller instance with API function itr_chip_init(). The driver calls the
registered interrupt consumer(s) handler(s) with API function interrupt_call_handlers().

CPU main interrupt controller driver
The CPU interrupt controller (e.g. a GIC instance on Arm architecture CPUs) is called the main interrupt controller.
Its driver must register as main controller using API function interrupt_main_init(). The function is in charge of
calling itr_chip_init() for that chip instance.

Interrupt consumer drivers can get a reference to the main interrupt controller with the API function
interrupt_get_main_chip().

Interrupt handlers
Interrupt handler functions are callback functions registered by interrupt consumer drivers that core shall call when the
related interrupt occurs. Structure struct itr_handler references a handler. It contains the handler function entry
point, the interrupt number, the interrupt controller device and a few more parameters.

An interrupt handler function return value is of type enum itr_return. It shall return ITRR_HANDLED when the
interrupt is served and ITRR_NONE when the interrupt cannot be served.

The interrupt handler runs in an interrupt context rather than a thread context. When this occurs, all other interrupts
are masked, necessitating fast execution of the interrupt handler to avoid delaying or missing out on other interrupts.
When an interrupt occurs that requires the completion of long-running operations, the interrupt handler should request
the OP-TEE bottom half thread (see Notifications) to execute those operations.

API function interrupt_add_handler(), interrupt_add_handler_with_chip() and
interrupt_alloc_add_handler() configure and register a handler function to a given interrupt.

API function interrupt_remove_handler() and interrupt_remove_free_handler() unregister a registered
handler.

Interrupt consumer driver
A typical implementation of a driver consuming an interrupt includes retrieving of the interrupt resource (interrupt
controller and interrupt number in that controller), configuring the interrupt, registering a handler for the interrupt and
enabling/disabling the interrupt.

For example, the dummy driver below prints a debug trace when the related interrupt occurs:

static struct itr_handler *foo_int1_handler;

static struct foo_int1_data = {
/* field with some interrupt handler private data */

(continues on next page)

2.1. Core 27

OP-TEE Documentation

(continued from previous page)

};

static enum itr_return foo_it_handler_fn(struct itr_handler *h)
{

foo_acknowledge_interrupt(h->it);.
DMSG("Interrupt FOO%u served", h->it);

return ITRR_HANDLED;
}

static TEE_Result foo_initialization(void)
{

TEE_Result res = TEE_ERROR_GENERIC;

res = interrupt_alloc_add_handler(itr_core_get(),
GIC_INT_FOO,
foo_it_handler_fn,
ITRF_TRIGGER_LEVEL,
&foo_int1_data,
&foo_int1_handler);

if (res)
return res;

interrupt_enable(itr_chip, it_num);

return TEE_SUCCESS;
}

static void foo_release(void)
{

if (foo_int1_handler) {
interrupt_disable(foo_int1_handler->chip,

foo_int1_handler->it);

interrupt_remove_free_handler(&foo_int1_handler);
}

}

2.1.2 Notifications

There are two kinds of notifications that secure world can use to make normal world aware of some event.

1. Synchronous notifications delivered with OPTEE_RPC_CMD_NOTIFICATION using the
OPTEE_RPC_NOTIFICATION_SEND parameter.

2. Asynchronous notifications delivered with a combination of a non-secure interrupt and a fast call from the non-
secure interrupt handler.

Secure world can wait in normal for a notification to arrive. This allows the calling thread to sleep instead of spinning
when waiting for something. This happens for instance when a thread waits for a mutex to become available.

28 Chapter 2. Architecture

OP-TEE Documentation

Synchronous notifications are limited by depending on RPC for delivery, this is only usable from a normal thread
context. Secure interrupt handler or other atomic context cannot use synchronous notifications due to this.

Asynchrononous notifications uses a platform specific way of triggering a non-secure interrupt. This is done with
itr_raise_pi() in a way suitable for a secure interrupt handler or another atomic context. This is useful when using
a top half and bottom half kind of design in a device driver. The top half is done in the secure interrupt handler which
then triggers normal world to make a yielding call into secure world to do the bottom half processing.

Fig. 5: Top half, bottom half example

Notifications are identified with a value, allocated as:

0 - 63
Mixed asynchronous and synchronous range

64 - Max
Synchronous only range

If the Max value is smaller than 63, then there’s only the mixed range.

If asynchronous notifications are enabled then is the value 0 reserved for signalling the a driver need a bottom half call,
that is the yielding call OPTEE_MSG_CMD_DO_BOTTOM_HALF.

The rest of the asynchronous notification values are managed with two functions notif_alloc_async_value() and
notif_free_async_value().

2.1. Core 29

OP-TEE Documentation

Fig. 6: Synchronous example

30 Chapter 2. Architecture

OP-TEE Documentation

2.1.3 Memory objects

A memory object, MOBJ, describes a piece of memory. The interface provided is mostly abstract when it comes to
using the MOBJ to populate translation tables etc. There are different kinds of MOBJs describing:

• Physically contiguous memory
– created with mobj_phys_alloc(...).

• Virtual memory
– one instance with the name mobj_virt available.

– spans the entire virtual address space.

• Physically contiguous memory allocated from a tee_mm_pool_t *
– created with mobj_mm_alloc(...).

• Paged memory
– created with mobj_paged_alloc(...).

– only contains the supplied size and makes mobj_is_paged(...) return true if supplied as argument.

• Secure copy paged shared memory
– created with mobj_seccpy_shm_alloc(...).

– makes mobj_is_paged(...) and mobj_is_secure(...) return true if supplied as argument.

2.1.4 MMU

Translation tables

OP-TEE supports two translation table formats:

1. Short-descriptor translation table format, available on ARMv7-A and ARMv8-A AArch32

2. Long-descriptor translation format, available on ARMv7-A with LPAE and ARMv8-A

ARMv7-A without LPAE (Large Physical Address Extension) must use the short-descriptor translation table format
only. ARMv8-A AArch64 must use the long-descriptor translation format only.

Translation table format is a static build time configuration option, CFG_WITH_LPAE. The design around the translation
table handling has been centered around these factors:

1. Share translation tables between CPUs when possible to save memory and simplify paging

2. Support non-global CPU specific mappings to allow executing different TAs in parallel.

2.1. Core 31

OP-TEE Documentation

Short-descriptor translation table format

Several L1 translation tables are used, one large spanning 4 GiB and two or more small tables spanning 32 MiB. The
large translation table handles kernel mode mapping and matches all addresses not covered by the small translation
tables. The small translation tables are assigned per thread and covers the mapping of the virtual memory space for
one TA context.

Memory space between small and large translation table is configured by TTBCR. TTBR1 always points to the large
translation table. TTBR0 points to the a small translation table when user mapping is active and to the large translation
table when no user mapping is currently active. For details about registers etc, please refer to a Technical Reference
Manual for your architecture, for example Cortex-A53 TRM.

The translation tables has certain alignment constraints, the alignment (of the physical address) has to be the same as
the size of the translation table. The translation tables are statically allocated to avoid fragmentation of memory due to
the alignment constraints.

Each thread has one small L1 translation table of its own. Each TA context has a compact representation of its L1
translation table. The compact representation is used to initialize the thread specific L1 translation table when the TA
context is activated.

TTBR0

TTBR1

Large L1
Spans 4 GiB

No active ctx

Small L1
Spans 32 MiB

per entry

0

1

...

n

Thread 0 ctx active

Thread 1 ctx active

Thread n ctx active

32 Chapter 2. Architecture

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0500j/DDI0500J_cortex_a53_trm.pdf

OP-TEE Documentation

Long-descriptor translation table format

Each CPU is assigned a L1 translation table which is programmed into Translation Table Base Register 0 (TTBR0 or
TTBR0_EL1 as appropriate).

L1 and L2 translation tables are statically allocated and initialized at boot. Normally there is only one shared L2 table,
but with ASLR enabled the virtual address space used for the shared mapping may need to use two tables. An unused
entry in the L1 table is selected to point to the per thread L2 table. With ASLR configured this means that different per
thread entry may be selected each time the system boots. Note that this entry will only point to a table when the per
thread mapping is activated.

The L2 translation tables in their turn point to L3 tables which use the small page granularity of 4 KiB. The shared
mappings has the L3 tables initialized too at boot, but the per thread L3 tables are dynamic and are only assigned when
the mapping is activated.

TTBR0 Per CPU L1 table

0

1

2

3

Shared L2 table n

0

...

512

Shared L2 table m

0

...

512

Per thread L2 table

0

...

512

Fig. 7: Example translation table setup with 4GiB virtual address space with L3 tables excluded

2.1. Core 33

OP-TEE Documentation

Page table cache

Page tables used to map TAs are managed with the page table cache. When the context of a TA is unmapped, all its
page tables are released with a call to pgt_free(). All page tables needed when mapping a TA are allocated using
pgt_alloc().

A fixed maximum number of translation tables are available in a pool. One thread may execute a TA which needs all
or almost all tables. This can block TAs from being executed by other threads. To ensure that all TAs eventually will
be permitted to execute pgt_alloc() temporarily frees eventual tables allocated before waiting for tables to become
available.

The page table cache behaves differently depending on configuration options.

Without paging (CFG_WITH_PAGER=n)

This is the easiest configuration. All page tables are statically allocated in the .nozi.pgt_cache section.
pgt_alloc() allocates tables from the free-list and pgt_free() returns the tables directly to the free-list.

With paging enabled (CFG_WITH_PAGER=y)

Page tables are allocated as zero initialized locked pages during boot using tee_pager_alloc(). Locked pages are
populated with physical pages on demand from the pager. The physical page can be released when not needed any
longer with tee_pager_release_phys().

With CFG_WITH_LPAE=y each translation table has the same size as a physical page which makes it easy to re-
lease the physical page when the translation table isn’t needed any longer. With the short-descriptor table format
(CFG_WITH_LPAE=n) it becomes more complicated as four translation tables are stored in each page. Additional book-
keeping is used to tell when the page for used by four separate translation tables can be released.

With paging of user TA enabled (CFG_PAGED_USER_TA=y)

With paging of user TAs enabled a cache of recently used translation tables is used. This can save us from a
storm of page faults when restoring the mappings of a recently unmapped TA. Which translation tables should be
cached is indicated with reference counting by the pager on used tables. When a table needs to be forcefully freed
tee_pager_pgt_save_and_release_entries() is called to let the pager know that the table can’t be used any
longer.

When a mapping in a TA is removed it also needs to be purged from cached tables with pgt_flush_ctx_range() to
prevent old mappings from being accidentally reused.

Switching to user mode

This section only applies with following configuration flags:

• CFG_WITH_LPAE=n

• CFG_CORE_UNMAP_CORE_AT_EL0=y

When switching to user mode only a minimal kernel mode mapping is kept. This is achieved by selecting a zeroed out
big L1 translation in TTBR1 when transitioning to user mode. When returning back to kernel mode the original L1
translation table is restored in TTBR1.

34 Chapter 2. Architecture

OP-TEE Documentation

Switching to normal world

When switching to normal world either via a foreign interrupt (see Native and foreign interrupts or RPC there is a chance
that secure world will resume execution on a different CPU. This means that the new CPU need to be configured with
the context of the currently active TA. This is solved by always setting the TA context in the CPU when resuming
execution.

2.1.5 Pager

OP-TEE currently requires >256 KiB RAM for OP-TEE kernel memory. This is not a problem if OP-TEE uses Trust-
Zone protected DDR, but for security reasons OP-TEE may need to use TrustZone protected SRAM instead. The
amount of available SRAM varies between platforms, from just a few KiB up to over 512 KiB. Platforms with just a
few KiB of SRAM cannot be expected to be able to run a complete TEE solution in SRAM. But those with 128 to
256 KiB of SRAM can be expected to have a capable TEE solution in SRAM. The pager provides a solution to this by
demand paging parts of OP-TEE using virtual memory.

Secure memory

TrustZone protected SRAM is generally considered more secure than TrustZone protected DRAM as there is usually
more attack vectors on DRAM. The attack vectors are hardware dependent and can be different for different platforms.

Backing store

TrustZone protected DRAM or in some cases non-secure DRAM is used as backing store. The data in the backing store
is integrity protected with one hash (SHA-256) per page (4KiB). Readonly pages are not encrypted since the OP-TEE
binary itself is not encrypted.

2.1. Core 35

OP-TEE Documentation

Partitioning of memory

The code that handles demand paging must always be available as it would otherwise lead to deadlock. The virtual
memory is partitioned as:

Type Sections
unpaged

text
rodata
data
bss
heap1
nozi
heap2

init / paged

text_init
rodata_init

paged

text_pageable
rodata_pageable

demand alloc

Where nozi stands for “not zero initialized”, this section contains entry stacks (thread stack when TEE pager is not
enabled) and translation tables (TEE pager cached translation table when the pager is enabled and LPAE MMU is used).

The init area is available when OP-TEE is initializing and contains everything that is needed to initialize the pager.
After the pager has been initialized this area will be used for demand paged instead.

The demand alloc area is a special area where the pages are allocated and removed from the pager on demand. Those
pages are returned when OP-TEE does not need them any longer. The thread stacks currently belongs this area. This
means that when a stack is not used the physical pages can be used by the pager for better performance.

The technique to gather code in the different area is based on compiling all functions and data into separate sections.
The unpaged text and rodata is then gathered by linking all object files with --gc-sections to eliminate sections that
are outside the dependency graph of the entry functions for unpaged functions. A script analyzes this ELF file and
generates the bits of the final link script. The process is repeated for init text and rodata. What is not “unpaged” or
“init” becomes “paged”.

36 Chapter 2. Architecture

OP-TEE Documentation

Partitioning of the binary

Note: The struct definitions provided in this section are explicitly covered by the following dual license:

SPDX-License-Identifier: (BSD-2-Clause OR GPL-2.0)

The binary is partitioned into four parts as:

Binary
Header
Init
Hashes
Pageable

The header is defined as:

#define OPTEE_MAGIC 0x4554504f
#define OPTEE_VERSION 1
#define OPTEE_ARCH_ARM32 0
#define OPTEE_ARCH_ARM64 1

struct optee_header {
uint32_t magic;
uint8_t version;
uint8_t arch;
uint16_t flags;
uint32_t init_size;
uint32_t init_load_addr_hi;
uint32_t init_load_addr_lo;
uint32_t init_mem_usage;
uint32_t paged_size;

};

The header is only used by the loader of OP-TEE, not OP-TEE itself. To initialize OP-TEE the loader loads the complete
binary into memory and copies what follows the header and the following init_size bytes to (init_load_addr_hi
<< 32 | init_load_addr_lo). init_mem_usage is used by the loader to be able to check that there is enough
physical memory available for OP-TEE to be able to initialize at all. The loader supplies in r0/x0 the address of the
first byte following what was not copied and jumps to the load address to start OP-TEE.

In addition to overall binary with partitions inside described as above, three extra binaries are generated simultaneously
during build process for loaders who support loading separate binaries:

v2 binary
Header

v2 binary
Init
Hashes

2.1. Core 37

OP-TEE Documentation

v2 binary
Pageable

In this case, loaders load header binary first to get image list and information of each image; and then load each of
them into specific load address assigned in structure. These binaries are named with v2 suffix to distinguish from the
existing binaries. Header format is updated to help loaders loading binaries efficiently:

#define OPTEE_IMAGE_ID_PAGER 0
#define OPTEE_IMAGE_ID_PAGED 1

struct optee_image {
uint32_t load_addr_hi;
uint32_t load_addr_lo;
uint32_t image_id;
uint32_t size;

};

struct optee_header_v2 {
uint32_t magic;
uint8_t version;
uint8_t arch;
uint16_t flags;
uint32_t nb_images;
struct optee_image optee_image[];

};

Magic number and architecture are identical as original. Version is increased to two. load_addr_hi and
load_addr_lo may be 0xFFFFFFFF for pageable binary since pageable part may get loaded by loader into dynamic
available position. image_id indicates how loader handles current binary. Loaders who don’t support separate loading
just ignore all v2 binaries.

Initializing the pager

The pager is initialized as early as possible during boot in order to minimize the “init” area. The global vari-
able tee_mm_vcore describes the virtual memory range that is covered by the level 2 translation table supplied to
tee_pager_init(...).

Assign pageable areas

A virtual memory range to be handled by the pager is registered with a call to tee_pager_add_core_area().

bool tee_pager_add_area(tee_mm_entry_t *mm,
uint32_t flags,
const void *store,
const void *hashes);

which takes a pointer to tee_mm_entry_t to tell the range, flags to tell how memory should be mapped (readonly,
execute etc), and pointers to backing store and hashes of the pages.

38 Chapter 2. Architecture

OP-TEE Documentation

Assign physical pages

Physical SRAM pages are supplied by calling tee_pager_add_pages(...)

void tee_pager_add_pages(tee_vaddr_t vaddr,
size_t npages,
bool unmap);

tee_pager_add_pages(...) takes the physical address stored in the entry mapping the virtual address vaddr and
npages entries after that and uses it to map new pages when needed. The unmap parameter tells whether the pages
should be unmapped immediately since they does not contain initialized data or be kept mapped until they need to be
recycled. The pages in the “init” area are supplied with unmap == false since those page have valid content and are
in use.

Invocation

The pager is invoked as part of the abort handler. A pool of physical pages are used to map different virtual addresses.
When a new virtual address needs to be mapped a free physical page is mapped at the new address, if a free physical
page cannot be found the oldest physical page is selected instead. When the page is mapped new data is copied from
backing store and the hash of the page is verified. If it is OK the pager returns from the exception to resume the
execution.

Data structures

Fig. 8: How the main pager data structures relates to each other

struct tee_pager_area

This is a central data structure when handling paged memory ranges. It’s defined as:

struct tee_pager_area {
struct fobj *fobj;
size_t fobj_pgoffs;
enum tee_pager_area_type type;
uint32_t flags;
vaddr_t base;

(continues on next page)

2.1. Core 39

OP-TEE Documentation

(continued from previous page)

size_t size;
struct pgt *pgt;
TAILQ_ENTRY(tee_pager_area) link;
TAILQ_ENTRY(tee_pager_area) fobj_link;

};

Where base and size tells the memory range and fobj and fobj_pgoffs holds the content. A struct
tee_pager_area can only use struct fobj and one struct pgt (translation table) so memory ranges spanning
multiple fobjs or pgts are split into multiple areas.

struct fobj

This is a polymorph object, using different implmentations depending on how it’s initialized. It’s defines as:

struct fobj_ops {
void (*free)(struct fobj *fobj);
TEE_Result (*load_page)(struct fobj *fobj, unsigned int page_idx,

void *va);
TEE_Result (*save_page)(struct fobj *fobj, unsigned int page_idx,

const void *va);
};

struct fobj {
const struct fobj_ops *ops;
unsigned int num_pages;
struct refcount refc;
struct tee_pager_area_head areas;

};

num_pages
Tells how many pages this fobj covers.

refc
A reference counter, everyone referring to a fobj need to increase and decrease this as needed.

areas
A list of areas using this fobj, traversed when making a virtual page unavailable.

struct tee_pager_pmem

This structure represents a physical page. It’s defined as:

struct tee_pager_pmem {
unsigned int flags;
unsigned int fobj_pgidx;
struct fobj *fobj;
void *va_alias;
TAILQ_ENTRY(tee_pager_pmem) link;

};

PMEM_FLAG_DIRTY
Bit is set in flags when the page is mapped read/write at at least one location.

40 Chapter 2. Architecture

OP-TEE Documentation

PMEM_FLAG_HIDDEN
Bit is set in flags when the page is hidden, that is, not accessible anywhere.

fobj_pgidx
The page at this index in the fobj is used in this physical page.

fobj
The fobj backing this page.

va_alias
Virtual address where this physical page is updated when loading it from backing store or when
writing it back.

All struct tee_pager_pmem are stored either in the global list tee_pager_pmem_head or in
tee_pager_lock_pmem_head. The latter is used by pages which are mapped and then locked in memory on
demand. The pages are returned back to tee_pager_pmem_head when the pages are exlicitly released with a call to
tee_pager_release_phys().

A physical page can be used by more than one tee_pager_area simultaneously. This is also know as shared secure
memory and will appear as such for both read-only and read-write mappings.

When a page is hidden it’s unmapped from all translation tables and the PMEM_FLAG_HIDDEN bit is set, but kept in
memory. When a physical page is released it’s also unmapped from all translation tables and it’s content is written back
to storage, then the fobj field is set to NULL to note the physical page as unused.

Note that when struct tee_pager_pmem references a fobj it doesn’t update the reference counter since it’s already
guaranteed to be available due the struct tee_pager_area which must reference the fobj too.

Paging of user TA

Paging of user TAs can optionally be enabled with CFG_PAGED_USER_TA=y. Paging of user TAs is analogous to paging
of OP-TEE kernel parts but with a few differences:

• Read/write pages are paged in addition to read-only pages

• Page tables are managed dynamically

tee_pager_add_uta_area(...) is used to setup initial read/write mapping needed when populating the TA. When
the TA is fully populated and relocated tee_pager_set_uta_area_attr(...) changes the mapping of the area to
strict permissions used when the TA is running.

Paging shared secure memory

Shared secure memory is achieved by letting several tee_pager_area using the same backing fobj. When a
tee_pager_area is allocated and assigned a fobj it’s also added to a list for tee_pager_areas using this fobj.
This helps when a physical page is released.

When a fault occurs first a matching tee_pager_area is located. Then tee_pager_pmem_head is searched to see if
a physical page already holds the page of the fobj needed. If so the pgt is updated to map the physical page at the
appropriate locatation. If no physical page was holding the page a new physical page is allocated, initialized and finally
mapped.

In order to make as few updates to mappings as possible changes to less restricted, no access -> read-only or read-only
to read-write, is done only for the virtual address was used when the page fault occurred. Changes in the other direction
has to be done in all translation tables used to map the physical page.

2.1. Core 41

OP-TEE Documentation

2.1.6 Stacks

Different stacks are used during different stages. The stacks are:

• Secure monitor stack (128 bytes), bound to the CPU. Only available if OP-TEE is compiled with a secure
monitor always the case if the target is Armv7-A but never for Armv8-A.

• Temp stack (small ~1KB), bound to the CPU. Used when transitioning from one state to another. Interrupts are
always disabled when using this stack, aborts are fatal when using the temp stack.

• Abort stack (medium ~2KB), bound to the CPU. Used when trapping a data or pre-fetch abort. Aborts from
user space are never fatal the TA is only killed. Aborts from kernel mode are used by the pager to do the demand
paging, if pager is disabled all kernel mode aborts are fatal.

• Thread stack (large ~8KB), not bound to the CPU instead used by the current thread/task. Interrupts are usually
enabled when using this stack.

Notes for Armv7-A/AArch32

Stack Comment
Temp Assigned to SP_SVC during entry/exit, always assigned to SP_IRQ and SP_FIQ
Abort Always assigned to SP_ABT
Thread Assigned to SP_SVC while a thread is active

Notes for AArch64
There are only two stack pointers, SP_EL1 and SP_EL0, available for OP-TEE in AArch64. When an exception is
received stack pointer is always SP_EL1 which is used temporarily while assigning an appropriate stack pointer
for SP_EL0. SP_EL1 is always assigned the value of thread_core_local[cpu_id]. This structure has some
spare space for temporary storage of registers and also keeps the relevant stack pointers. In general when we talk
about assigning a stack pointer to the CPU below we mean SP_EL0.

Boot

During early boot the CPU is configured with the temp stack which is used until OP-TEE exits to normal world the first
time.

Notes for AArch64
SPSEL is always 0 on entry/exit to have SP_EL0 acting as stack pointer.

Normal entry

Each time OP-TEE is entered from normal world the temp stack is used as the initial stack. For fast calls, this is the
only stack used. For normal calls an empty thread slot is selected and the CPU switches to that stack.

42 Chapter 2. Architecture

OP-TEE Documentation

Normal exit

Normal exit occurs when a thread has finished its task and the thread is freed. When the main thread function,
tee_entry_std(...), returns interrupts are disabled and the CPU switches to the temp stack instead. The thread is
freed and OP-TEE exits to normal world.

RPC exit

RPC exit occurs when OP-TEE need some service from normal world. RPC can currently only be performed with a
thread is in running state. RPC is initiated with a call to thread_rpc(...) which saves the state in a way that when
the thread is restored it will continue at the next instruction as if this function did a normal return. CPU switches to use
the temp stack before returning to normal world.

Foreign interrupt exit

Foreign interrupt exit occurs when OP-TEE receives a foreign interrupt. For Arm GICv2 mode, foreign interrupt
is sent as IRQ which is always handled in normal world. Foreign interrupt exit is similar to RPC exit but it is
thread_irq_handler(...) and elx_irq(...) (respectively for Armv7-A/Aarch32 and for Aarch64) that saves
the thread state instead. The thread is resumed in the same way though. For Arm GICv3 mode, foreign interrupt is sent
as FIQ which could be handled by either secure world (EL3 in AArch64) or normal world. This mode is not supported
yet.

Notes for Armv7-A/AArch32
SP_IRQ is initialized to temp stack instead of a separate stack. Prior to exiting to normal world CPU state is
changed to SVC and temp stack is selected.

Notes for AArch64
SP_EL0 is assigned temp stack and is selected during IRQ processing. The original SP_EL0 is saved in the thread
context to be restored when resuming.

Resume entry

OP-TEE is entered using the temp stack in the same way as for normal entry. The thread to resume is looked up and the
state is restored to resume execution. The procedure to resume from an RPC exit or an foreign interrupt exit is exactly
the same.

Syscall

Syscall’s are executed using the thread stack.

Notes for Armv7-A/AArch32
Nothing special SP_SVC is already set with thread stack.

Notes for syscall AArch64
Early in the exception processing the original SP_EL0 is saved in struct thread_svc_regs in case the TA is
executed in AArch64. Current thread stack is assigned to SP_EL0which is then selected. When returning SP_EL0
is assigned what is in struct thread_svc_regs. This allows tee_svc_sys_return_helper(...) having
the syscall exception handler return directly to thread_unwind_user_mode(...).

2.1. Core 43

OP-TEE Documentation

2.1.7 Shared Memory

Shared Memory is a block of memory that is shared between the non-secure and the secure world. It is used to transfer
data between both worlds.

The shared memory is allocated and managed by the non-secure world, i.e. the Linux OP-TEE driver. Secure world only
considers the individual shared buffers, not their pool. Each shared memory is referenced with associated attributes:

• Buffer start address and byte size,

• Cache attributes of the shared memory buffer,

• List of chunks if mapped from noncontiguous pages.

Shared memory buffer references manipulated must fit inside one of the shared memory areas known from the OP-TEE
core. OP-TEE supports two kinds of shared memory areas: an area for contiguous buffers and an area for noncontiguous
buffers. At least one has to be enabled.

Contiguous shared memory is the historical OP-TEE legacy shared memory scheme where a specific physical memory
area is shared. Nowadays, platforms tend to describe the physical memory layout and enable noncontiguous dynamic
shared memory, allowing the non-secure OS to use its native system memory as legitimate shared memory references.

Contiguous shared buffers

Configuration directives CFG_SHMEM_START and CFG_SHMEM_SIZE define a share memory area where shared memory
buffers are contiguous. Generic memory layout registers it as the MEM_AREA_NSEC_SHM memory area.

The non-secure world issues OPTEE_SMC_GET_SHM_CONFIG to retrieve contiguous shared memory area configuration:

• Physical address of the start of the pool

• Size of the pool

• Whether or not the memory is cached

Contiguous shared memory (also known as static or reserved shared memory) is enabled with the configuration flag
CFG_CORE_RESERVED_SHM=y.

Noncontiguous shared buffers

To benefit from noncontiguous shared memory buffers, platform shall enable dynamic shared memory
(CFG_CORE_DYN_SHM=y). When enabled, OP-TEE core is given the main memory address range(s) seen
from non-secure OS. Non-secure client application can simply register a memory buffer as (e.g. with
TEEC_RegisterSharedMmeory()) so that it can be used in OP-TEE communication.

This feature requires Linux OP-TEE driver to properly handle the memory references of its various clients memories:
userland applications, kernel drivers, remote services.

This feature also requires OP-TEE core to know the legitimate addresses ranges where non-secure can claim to use a
shared memory page. The OP-TEE core generic boot sequence discovers dynamic shared areas from the device tree
(memory nodes) and/or areas explicitly registered by the platform (register_ddr()).

Non-secure side needs to register buffers as 4kByte chunks lists into OP-TEE core using the
OPTEE_MSG_CMD_REGISTER_SHM API prior referencing to them using the OP-TEE invocation API.

For performance reasons, the TEE Client Library (libteec) uses noncontiguous shared memory when available since
it avoids copies in some situations.

44 Chapter 2. Architecture

OP-TEE Documentation

Shared Memory Chunk Allocation

It is the Linux kernel driver for OP-TEE that is responsible for allocating chunks of shared memory. OP-TEE
linux kernel driver relies on linux kernel generic allocation support (CONFIG_GENERIC_ALLOCATION) to alloca-
tion/release of shared memory physical chunks. OP-TEE linux kernel driver relies on linux kernel dma-buf support
(CONFIG_DMA_SHARED_BUFFER) to track shared memory buffers references.

Registering shared memory

Only dynamic or physically non-contiguous shared memory needs to be registered. Static or physically contiguous
shared memory is already known to OP-TEE OS.

SMC based OP-TEE MSG ABI

With the SMC based OP-TEE MSG ABI there are a few exceptions where memory doesn’t need to be shared before it
can be accessed from OP-TEE OS. These are:

1. When issuing the SMC OPTEE_SMC_CALL_WITH_ARG where the physical address of the supplied struct
optee_msg_arg is passed in one of the registers.

2. When issuing the SMC OPTEE_SMC_CALL_RETURN_FROM_RPC as a return from the request
OPTEE_SMC_RETURN_RPC_ALLOC to allocate memory. This RPC return is combined with an implicit
registration of shared memory. The registration is ended with a OPTEE_SMC_RETURN_RPC_FREE request.

Fig. 9: Register shared memory example

FF-A based OP-TEE MSG ABI

With the FF-A based OP-TEE MSG ABI memory must always be registered before it can be used by OP-TEE OS.
This case can potentially also involve another component in secure world, SPMC at S-EL2 a secure hypervisor which
controls which memory OP-TEE OS can see or use.

In the case where there are no SPMC at S-EL2OP-TEE OS will take care of that part of the communication with normal
world. This means that for normal world communication with OP-TEE OS is the same regardless of the presence of a
secure hypervisor.

Registration of shared memory is a two step procedure. It’s first registered with a call to the SPMC which returns a
cookie or global memory handle. This cookie is later used when calling OP-TEE OS, if the cookie isn’t already known

2.1. Core 45

OP-TEE Documentation

Fig. 10: Unregister shared memory example

to OP-TEE OS it will ask the SPMC to make the memory available. This lazy second step is a way of saving an extra
round trip to secure world.

Fig. 11: Register shared memory example

Unregistration of shared memory is also done in two steps. First with a call to OP-TEE and then with a call to the
SPMC. If the lazy second step of shared memory has not been done, then OP-TEE OS doesn’t need to interact with the
SPMC.

Using shared memory

From the Client Application
The client application can ask for shared memory allocation using the GlobalPlatform Client API function
TEEC_AllocateSharedMemory(...). The client application can also register a memory through the Glob-
alPlatform Client API function TEEC_RegisterSharedMemory(...). The shared memory reference can then
be used as parameter when invoking a trusted application.

From the Linux Driver
Occasionally the Linux kernel driver needs to allocate shared memory for the communication with secure world,
for example when using buffers of type TEEC_TempMemoryReference.

46 Chapter 2. Architecture

OP-TEE Documentation

Fig. 12: Calling OP-TEE OS with shared memory

Fig. 13: Unregister shared memroy

2.1. Core 47

OP-TEE Documentation

From OP-TEE core
In case OP-TEE core needs information from TEE supplicant (dynamic TA loading, REE time request,. . .),
shared memory must be allocated. Allocation depends on the use case. OP-TEE core asks for the following
shared memory allocation:

• optee_msg_arg structure, used to pass the arguments to the non-secure world, where the allocation will
be done by sending a OPTEE_SMC_RPC_FUNC_ALLOC message.

• In some cases, a payload might be needed for storing the result from TEE supplicant, for example
when loading a Trusted Application. This type of allocation will be done by sending the message
OPTEE_MSG_RPC_CMD_SHM_ALLOC(OPTEE_MSG_RPC_SHM_TYPE_APPL,...), which then will return:

– the physical address of the shared memory

– a handle to the memory, that later on will be used later on when freeing this memory.

From TEE Supplicant
TEE supplicant is also working with shared memory, used to exchange data between normal and secure worlds.
TEE supplicant receives a memory address from the OP-TEE core, used to store the data. This is for example
the case when a Trusted Application is loaded. In this case, TEE supplicant must register the provided shared
memory in the same way a client application would do, involving the Linux driver.

2.1.8 SMC

SMC Interface

OP-TEE’s SMC interface is defined in two levels using optee_smc.h and optee_msg.h. The former file defines SMC
identifiers and what is passed in the registers for each SMC. The latter file defines the OP-TEE Message protocol which
is not restricted to only SMC even if that currently is the only option available.

SMC communication

The main structure used for the SMC communication is defined in struct optee_msg_arg (in optee_msg.h). If
we are looking into the source code, we could see that communication mainly is achieved using optee_msg_arg and
thread_smc_args (in thread.h), where optee_msg_arg could be seen as the main structure. What will happen is that
the Linux kernel TEE framework driver will get the parameters either from optee_client or directly from an internal
service in Linux kernel. The TEE driver will populate the struct optee_msg_arg with the parameters plus some
additional bookkeeping information. Parameters for the SMC are passed in registers 1 to 7, register 0 holds the SMC
id which among other things tells whether it is a standard or a fast call.

2.1.9 Thread handling

OP-TEE core uses a couple of threads to be able to support running jobs in parallel (not fully enabled!). There are
handlers for different purposes. In thread.c you will find a function called thread_init_primary(...)which assigns
init_handlers (functions) that should be called when OP-TEE core receives standard or fast calls, FIQ and PSCI
calls. There are default handlers for these services, but the platform can decide if they want to implement their own
platform specific handlers instead.

48 Chapter 2. Architecture

https://github.com/OP-TEE/optee_os/blob/master/core/arch/arm/include/sm/optee_smc.h
https://github.com/OP-TEE/optee_os/blob/master/core/include/optee_msg.h
https://github.com/OP-TEE/optee_os/blob/master/core/include/optee_msg.h
https://github.com/OP-TEE/optee_os/blob/master/core/arch/arm/include/kernel/thread.h
https://github.com/OP-TEE/optee_os/blob/master/core/arch/arm/kernel/thread.c

OP-TEE Documentation

Synchronization primitives

OP-TEE has three primitives for synchronization of threads and CPUs: spin-lock, mutex, and condvar.

Spin-lock
A spin-lock is represented as an unsigned int. This is the most primitive lock. Interrupts should be dis-
abled before attempting to take a spin-lock and should remain disabled until the lock is released. A spin-lock is
initialized with SPINLOCK_UNLOCK.

Table 1: Spin lock functions

Function Purpose
cpu_spin_lock(.
..)

Locks a spin-lock

cpu_spin_trylock(.
..)

Locks a spin-lock if unlocked and returns 0 else the spin-lock is unchanged and the function
returns !0

cpu_spin_unlock(.
..)

Unlocks a spin-lock

Mutex
A mutex is represented by struct mutex. A mutex can be locked and unlocked with interrupts enabled or
disabled, but only from a normal thread. A mutex cannot be used in an interrupt handler, abort handler or before a
thread has been selected for the CPU. A mutex is initialized with either MUTEX_INITIALIZER or mutex_init(.
..).

Table 2: Mutex functions

Function Purpose
mutex_lock(.
..)

Locks a mutex. If the mutex is unlocked this is a fast operation, else the function issues an
RPC to wait in normal world.

mutex_unlock(.
..)

Unlocks a mutex. If there is no waiters this is a fast operation, else the function issues an
RPC to wake up a waiter in normal world.

mutex_trylock(.
..)

Locks a mutex if unlocked and returns true else the mutex is unchanged and the function
returns false.

mutex_destroy(.
..)

Asserts that the mutex is unlocked and there is no waiters, after this the memory used by
the mutex can be freed.

When a mutex is locked it is owned by the thread calling mutex_lock(...) or mutex_trylock(...), the
mutex may only be unlocked by the thread owning the mutex. A thread should not exit to TA user space when
holding a mutex.

Condvar
A condvar is represented by struct condvar. A condvar is similar to a pthread_condvar_t in the pthreads
standard, only less advanced. Condition variables are used to wait for some condition to be fulfilled and are always
used together a mutex. Once a condition variable has been used together with a certain mutex, it must only be used
with that mutex until destroyed. A condvar is initialized with CONDVAR_INITIALIZER or condvar_init(...).

2.1. Core 49

OP-TEE Documentation

Table 3: Condvar functions

Function Purpose
condvar_wait(.
..)

Atomically unlocks the supplied mutex and waits in normal world via an RPC for the con-
dition variable to be signaled, when the function returns the mutex is locked again.

condvar_signal(.
..)

Wakes up one waiter of the condition variable (waiting in condvar_wait(...)).

condvar_broadcast(.
..)

Wake up all waiters of the condition variable.

The caller of condvar_signal(...) or condvar_broadcast(...) should hold the mutex associated with
the condition variable to guarantee that a waiter does not miss the signal.

2.2 Cryptographic implementation

This document describes how the TEE Cryptographic Operations API is implemented, how the default crypto provider
may be configured at compile time, and how it may be replaced by another implementation.

2.2.1 Overview

There are several layers from the Trusted Application to the actual crypto algorithms. Most of the crypto code runs in
kernel mode inside the TEE core. Here is a schematic view of a typical call to the crypto API. The numbers in square
brackets ([1], [2]. . .) refer to the sections below.

- some_function() (Trusted App) -
[1] TEE_*() User space (libutee.a)
------- utee_*() --
[2] tee_svc_*() Kernel space
[3] crypto_*() (libtomcrypt.a and crypto.c)
[4] /* LibTomCrypt */ (libtomcrypt.a)

2.2.2 [1] The TEE Cryptographic Operations API

OP-TEE implements the Cryptographic Operations API defined by the GlobalPlatform association in the TEE Internal
Core API . This includes cryptographic functions that span various cryptographic needs: message digests, symmetric ci-
phers, message authentication codes (MAC), authenticated encryption, asymmetric operations (encryption/decryption
or signing/verifying), key derivation, and random data generation. These functions make up the TEE Cryptographic
Operations API.

The Internal API is implemented in tee_api_operations.c, which is compiled into a static library: ${O}/ta_arm{32,
64}-lib/libutee/libutee.a.

Most API functions perform some parameter checking and manipulations, then invoke some utee_* function to switch
to kernel mode and perform the low-level work.

The utee_* functions are declared in utee_syscalls.h and implemented in utee_syscalls_asm.S They are simple system
call wrappers which use the SVC instruction to switch to the appropriate system service in the OP-TEE kernel.

50 Chapter 2. Architecture

https://github.com/OP-TEE/optee_os/blob/master/lib/libutee/tee_api_operations.c
https://github.com/OP-TEE/optee_os/blob/master/lib/libutee/include/utee_syscalls.h
https://github.com/OP-TEE/optee_os/blob/master/lib/libutee/arch/arm/utee_syscalls_asm.S

OP-TEE Documentation

2.2.3 [2] The crypto services

All cryptography-related system calls are declared in tee_svc_cryp.h and implemented in tee_svc_cryp.c. In addition
to dealing with the usual work required at the user/kernel interface (checking parameters and copying memory buffers
between user and kernel space), the system calls invoke a private abstraction layer: the Crypto API, which is declared
in crypto.h. It serves two main purposes:

1. Allow for alternative implementations, such as hardware-accelerated versions.

2. Provide an easy way to disable some families of algorithms at compile-time to save space. See LibTomCrypt
below.

2.2.4 [3] crypto_*()

The crypto_*() functions implement the actual algorithms and helper functions. TEE Core has one global active
implementation of this interface. The default implementation, mostly based on LibTomCrypt, is as follows:

Listing 1: File: core/crypto/crypto.c

/*
* Default implementation for all functions in crypto.h
*/

#if !defined(_CFG_CRYPTO_WITH_HASH)
TEE_Result crypto_hash_get_ctx_size(uint32_t algo __unused,

size_t *size __unused)
{

return TEE_ERROR_NOT_IMPLEMENTED;
}
...
#endif /*_CFG_CRYPTO_WITH_HASH*/

2.2. Cryptographic implementation 51

https://github.com/OP-TEE/optee_os/blob/master/core/include/tee/tee_svc_cryp.h
https://github.com/OP-TEE/optee_os/blob/master/core/tee/tee_svc_cryp.c
https://github.com/OP-TEE/optee_os/blob/master/core/include/crypto/crypto.h
https://github.com/libtom/libtomcrypt

OP-TEE Documentation

Listing 2: File: core/lib/libtomcrypt/tee_ltc_provider.c

#if defined(_CFG_CRYPTO_WITH_HASH)
TEE_Result crypto_hash_get_ctx_size(uint32_t algo, size_t *size)
{

/* ... */
return TEE_SUCCESS;

}

#endif /*_CFG_CRYPTO_WITH_HASH*/

As shown above, families of algorithms can be disabled and crypto.c will provide default null implementations that
will return TEE_ERROR_NOT_IMPLEMENTED.

2.2.5 Public/private key format

crypto.h uses implementation-specific types to hold key data for asymmetric algorithms. For instance, here is how a
public RSA key is represented:

Listing 3: File: core/include/crypto/crypto.h

struct rsa_public_key {
struct bignum *e; /* Public exponent */
struct bignum *n; /* Modulus */

};

This is also how such keys are stored inside the TEE object attributes (TEE_ATTR_RSA_PUBLIC_KEY in this case).
struct bignum is an opaque type, known to the underlying implementation only. struct bignum_ops provides
functions so that the system services can manipulate data of this type. This includes allocation/deallocation, copy, and
conversion to or from the big endian binary format.

Listing 4: File: core/include/crypto/crypto.h

struct bignum *crypto_bignum_allocate(size_t size_bits);

TEE_Result crypto_bignum_bin2bn(const uint8_t *from, size_t fromsize,
struct bignum *to);

void crypto_bignum_bn2bin(const struct bignum *from, uint8_t *to);
/*...*/

2.2.6 [4] LibTomCrypt

Some algorithms may be disabled at compile time if they are not needed, in order to reduce the size of the OP-TEE
image and reduces its memory usage. This is done by setting the appropriate configuration variable. For example:

$ make CFG_CRYPTO_AES=n # disable AES only
$ make CFG_CRYPTO_{AES,DES}=n # disable symmetric ciphers
$ make CFG_CRYPTO_{DSA,RSA,DH,ECC}=n # disable public key algorithms
$ make CFG_CRYPTO=n # disable all algorithms

Please refer to core/lib/libtomcrypt/sub.mk for the list of all supported variables.

52 Chapter 2. Architecture

https://github.com/OP-TEE/optee_os/blob/master/core/crypto/crypto.c
https://github.com/OP-TEE/optee_os/blob/master/core/include/crypto/crypto.h
https://github.com/OP-TEE/optee_os/blob/master/core/lib/libtomcrypt/sub.mk

OP-TEE Documentation

Note that the application interface is not modified when algorithms are disabled. This means, for instance, that the
functions TEE_CipherInit(), TEE_CipherUpdate() and TEE_CipherFinal()would remain present in libutee.
a even if all symmetric ciphers are disabled (they would simply return TEE_ERROR_NOT_IMPLEMENTED).

2.2.7 Add a new software based crypto implementation

To add a new software based implementation, the default one in core/lib/libtomcrypt in combination with what is in
core/crypto should be used as a reference. Here are the main things to consider when adding a new crypto provider:

• Put all the new code in its own directory under core/lib unless it is code that will be used regardless of which
crypto provider is in use. How we are dealing with AES-GCM in core/crypto could serve as an example.

• Avoid modifying tee_svc_cryp.c. It should not be needed.

• Although not all crypto families need to be defined, all are required for compliance to the GlobalPlatform spec-
ification.

• If you intend to make some algorithms optional, please try to re-use the same names for configuration variables
as the default implementation.

2.2.8 [5] Support for crypto IC

Some cryptographic co-processors and secure elements are supported under a Generic Cryptographic Driver interface,
connecting the TEE Crypto generic APIs to the HW driver interface. This interface is in core/drivers/crypto/crypto_api
and should be followed when adding support for new devices.

At the time of writing, OP-TEE does not support the GP TEE Secure Element API and therefore the access to the secure
element - the NXP EdgeLock® SE05x - follows the Cryptographic Operations API presenting a single session to the
device. This session is shared with the normal world through the PKCS#11 interface but also through a more generic
interface (libseetec) which allows clients to send Application Protocol Data Units (APDUs) directly to the device.

Notice that cryptographic co-processors do not necessarily comply with all the GP requirements tested and covered by
the OP-TEE sanity test suite (optee_test). In those cases where the cryptographic operations are not supported - i.e:
the SE05x does not implement all RSA key sizes - we opted for disabling those particular tests at build time rather than
letting them fail.

Some cryptographic co-processors may have limitations regarding the range of key sizes and supported ciphers. For
instance, the AMD/Xilinx Versal ACAP Cryptographic driver may have constraints on key sizes, while NXP SE5X
HSM modules may lack support for RSA or ECC. In such cases, especially when dealing with unsupported key sizes,
it may be necessary to resort to a software implementation of the cipher, typically utilizing LibTomCrypt.

Note: While the Hardware Security Modules or Cryptographic hardware processors supported by OP-TEE may
achieve FIPS 140-2 certification at level 3, the software implementations of certain algorithms that OP-TEE may fall-
back to cannot attain certification beyond level 2.

2.2. Cryptographic implementation 53

https://github.com/OP-TEE/optee_os/blob/master/core/lib/libtomcrypt
https://github.com/OP-TEE/optee_os/blob/master/core/crypto
https://github.com/OP-TEE/optee_os/blob/master/core/crypto
https://github.com/OP-TEE/optee_os/blob/master/core/tee/tee_svc_cryp.c
https://github.com/OP-TEE/optee_os/blob/master/core/drivers/crypto/crypto_api
https://globalplatform.org/specs-library/tee-secure-element-api/
https://github.com/OP-TEE/optee_client/commit/f4f54e5a76641fda22a49f00294771f948cd4c92
https://github.com/OP-TEE/optee_test

OP-TEE Documentation

2.2.9 NXP SE05X Family of Secure Elements

This family of I2C bus devices are supported through the se050 cryptographic driver located at
core/drivers/crypto/se050. Before the REE boots, the session with the device is established using one of the
OP-TEE supported I2C platform device drivers. Once the REE is up, the cryptographic driver can be configured to
use the I2C driver in the REE (via RPC service) or continue using the one in OP-TEE.

Unless the Secure Element owns the I2C bus (no other elements on the bus, no runtime-PM and so forth), it is rec-
ommended to route all traffic via the Normal World. Initial communication with the device is not data intensive and
therefore slow I2C drivers - perhaps those not using DMA channels - do not represent much of a performance drag; the
situation changes once clients start hammering the device.

If using the REE for I2C transfers, it is also imperative to configure the driver so that the GP Secure Channel Protocol 03
is enabled prior to exiting the Secure World; this way all communication between the processor and the secure element
is encrypted and MAC authenticated. Please check the usage of the CFG_CORE_SE05X_SCP03_EARLY configuration
option.

Aside of the secure element integration as an OP-TEE cryptographic driver, OP-TEE also presents an Application
Protocol Data Units (APDU) interface to users via its OP-TEE client.

Using this interface, priviledged applications can control the Secure Element to inject or delete keys or certificates,
encrypt, decrypt, sign and verify data and so forth. An application implementing a subset of those functions can be
seen in this Foundries.io repository: fio-se05x-cli

This reference code is not fully functional in mainline as it’s not yet possible to import keys and certificates from the
Secure Element into OP-TEE’s PKCS#11 implementation. However, a user could still clear the Secure Element NVM
memory and read certificates stored in it.

2.3 Device Tree

OP-TEE core can use the device tree format to inject platform configuration information during platform initialization
and possibly some run time contexts.

Device Tree technology allows to describe platforms from ASCII source files so-called DTS files. These can be used
to generate a platform description binary image, so-called DTB, embedded in the platform boot media for applying
expected configuration settings during the platform initializations.

This scheme relaxes design constraints on the OP-TEE core implementation as most of the platform specific hardware
can be tuned without modifying C source files or adding configuration directives in the build environments.

2.3.1 Secure and Non-Secure Device Trees

There can be several device trees embedded in the target system and some can be shared across the boot stages.

• Boot loader stages may load a device tree structure in memory for all boot stage to get platform configuration
from. If such device tree data are to be accessed by the non-secure world, they shall be located in non-secure
memory. Secure world may use its content during OP-TEE core initialization.

• Boot loader stages may load a device tree structure in secure memory for the benefit of the secure world only.
Such device tree blob shall be located in secure memory. Secure world could use its content but this is currently
not implemented in the latest OP-TEE release.

• OP-TEE core can also embedded a device tree structure to describe the platform.

• Non-secure world can embed its own device tree structure(s) and/or rely on a device tree structure loaded by the
secure world during its initialization which happen before non-secure world is booted.

54 Chapter 2. Architecture

https://github.com/OP-TEE/optee_os/blob/master/core/drivers/crypto/se050
https://globalplatform.org/wp-content/uploads/2019/03/GPC_2.2_D_SCP03_v1.0.pdf
https://github.com/foundriesio/fio-se05x-cli

OP-TEE Documentation

Fig. 14: Access to the Secure Element from libseetec and the APDU PTA.

2.3. Device Tree 55

OP-TEE Documentation

Obviously the non-secure world will not be able to access a device tree image located in a secure memory which
non-secure world has no access to.

When OP-TEE core is built with CFG_DT=y, non-secure and secure device trees can be accessed by OP-TEE core to
get some platform configuration information.

2.3.2 Generic boot and DTBs

Generic boot sequence gets discovers main memory address ranges from preferrably embedded DTB (section Embed-
ded Secure Device Tree), defaulting to early boot external DTB (section Early boot external device tree).

Generic boot uses early boot external DTB (section Early boot external device tree) to share platform configuration
information with the non-secure world.

Plaform and drivers can call OP-TEE DT API (core/include/kernel/dt.h) to access embedded and/or external
DTBs.

2.3.3 Early boot external device tree

The bootloader provides arguments to OP-TEE core when it boots it. Among those, the physical memory base address
of a non-secure device tree image accessible to OP-TEE core, or a null address value in absence of such DTB.

Platform configuration may statically define such DTB location using the build configuration directive CFG_DT_ADDR.

When an external DTB is referred, OP-TEE core gets the console configuration if the platform has registered a com-
patible driver by adding attribute __dt_driver to a defined const struct dt_driver instance.

When an external DTB is referred, OP-TEE core adds into this DTB the description of some OP-TEE resources. These
information can be used by the non-secure world to properly communicate with OP-TEE. This scheme assumes the
image is located in non-secure memory.

Modifications made by OP-TEE core on the non-secure device tree image provided by early boot and passed to non-
secure world are the following:

• Add an OP-TEE node if none found with the related invocation parameters.

• Add a reserved memory node for the few memory areas that shall be reserved to the secure world and non accessed
by the non-secure world.

• Add a PSCI description node if none found.

Early boot DTB can be accessed by OP-TEE core only during its initialization, before non-secure world boots as it is
expected the DTB memory location has likely been replaced with runtime contexts content.

Assuming there is no embedded DTB (section Embedded Secure Device Tree) OP-TEE core discovers the main memory
address ranges from the non-secure DTB.

2.3.4 Early boot device tree overlay

There are two possibilities for OP-TEE core to provide a device tree overlay to the non-secure world.

• Append OP-TEE nodes to an existing DTB overlay located in early boot DTB. (CFG_DT_ADDR or boot argument
register R2/X2).

• Generate a new DTB overlay image at location defined by CFG_DT_ADDR.

In the later case, memory referred by configuration directive CFG_DT_ADDR shall not contain a valid DTB image when
OP-TEE core is booted. A subsequent non-secure boot stage should merge the OP-TEE DTB overlay image into another
DTB.

56 Chapter 2. Architecture

OP-TEE Documentation

A typical bootflow for this would be Trusted Firmware-A -> OP-TEE -> U-Boot with U-Boot in charge of merging
OP-TEE DTB overlay located at CFG_DT_ADDR into a DTB U-Boot has loaded from elsewhere.

This functionality is enabled when CFG_EXTERNAL_DTB_OVERLAY=y.

2.3.5 Embedded Secure Device Tree

When OP-TEE core is built with configuration directive CFG_EMBED_DTB=y, directive
CFG_EMBED_DTB_SOURCE_FILE shall provide the relative path of the DTS file inside directory core/arch/
$(ARCH)/dts from which a DTB is generated and embedded in a read-only section of OP-TEE core.

Refer to core/include/kernel/dt.h for API to access embedded DTB.

Section Generic boot and DTBs documents the generic boot sequence against embedded DTB.

2.3.6 OP-TEE Specific Bindings

Google Widevine device-tree bindings

2.4 Device tree bindings

2.4.1 Google Widevine device-tree bindings

%YAML 1.2

$id: http://devicetree.org/schemas/options/op-tee/google,widevine.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#

title: Google Widevine initialization parameters

maintainers:
- Jeffrey Kardatzke <jkardatzke@chromium.org>
- Yi Chou <yich@chromium.org>

description:
Widevine is Google's content protection system for DRM (digital rights
management) contents.
The necessary fields to initialize the Widevine related functions in
OP-TEE. This node does not represent a real device, but serves as a
place for passing data between firmware and OP-TEE.
The content of this node should not be shared with the Linux kernel.

properties:
op-tee,hardware-unique-key:
$ref: /schemas/types.yaml#/definitions/uint8-array
maxItems: 32
description: |

The hardware-unique key of the OP-TEE. It will be used to derive
the secure storage key.
For more information, please reference:
https://optee.readthedocs.io/en/latest/architecture/porting_guidelines.html

(continues on next page)

2.4. Device tree bindings 57

OP-TEE Documentation

(continued from previous page)

→˓#hardware-unique-key

tcg,tpm-auth-public-key:
$ref: /schemas/types.yaml#/definitions/uint8-array
maxItems: 1024
description: |

The TPM auth public key. Used to communicate the TPM from OP-TEE.
The format of data should be TPM2B_PUBLIC.
For more information, please reference the 12.2.5 section:
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part2_

→˓Structures_pub.pdf

google,widevine-root-of-trust-ecc-p256:
$ref: /schemas/types.yaml#/definitions/uint8-array
maxItems: 32
description: |

The Widevine root of trust secret. Used to sign the Widevine
request in OP-TEE. The value is an ECC NIST P-256 scalar.
For more information, please reference the G.1.2 section:
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-186.pdf

required:
- op-tee,hardware-unique-key
- tcg,tpm-auth-public-key
- google,widevine-root-of-trust-ecc-p256

additionalProperties: false

examples:
- |
options {
google,widevine {
op-tee,hardware-unique-key = [
12 f7 98 d2 0e d2 85 92 a5 82 bf 98 b8 99 2b c0
c6 6f 19 85 79 86 65 18 55 eb ff 9b 6c c0 ac 27

];
tcg,tpm-auth-public-key = [
00 76 00 23 00 0b 00 02 04 b2 00 20 e1 47 bf 27
e1 74 30 c8 16 ab 72 4d 5c 77 e1 5c 61 2d 56 81
b3 35 cd 9d eb 67 41 37 69 f0 32 41 00 10 00 10
00 03 00 10 00 20 70 9a df 50 f9 0f d5 f4 40 e0
ea 2c e8 f2 26 9f 0e 5c 02 70 16 c3 6c c1 83 03
2d 04 10 bd 85 7a 00 20 83 03 c2 66 6e 01 32 34
5c 5e 80 22 c7 48 24 3c 70 6b b8 e4 24 42 74 a9
cf fc ab f8 30 e9 de 51

];
google,widevine-root-of-trust-ecc-p256 = [
ac 0d 86 c3 d7 b5 b7 a2 6f c3 d9 93 f7 de bc bb
d5 c4 25 9b 21 5f 36 af b5 dd 6d 29 9d 08 c0 10

];
};

};

58 Chapter 2. Architecture

OP-TEE Documentation

2.5 File structure

This page describes organization of the tree structure in optee_os.

The description is dived into different tables. First the flat top directory followed by the core/ directory tree with the
core/arch/arm/ tree in separate table. There are two more tables covering the lib/ and ta/ trees.

2.5.1 Top level directories

Directory Description
core/ Files that are only used building OP-TEE core, the privileged mode part
keys/ Secure keys or not so secure example keys
ldelf/ Ldelf the user mode ELF loader, for instance used to load TAs
lib/ Libraries that are used both when building more than one component, for instance, OP-TEE

core, ldelf, or TAs
mk/ Makefiles supporting the build system
scripts/ Helper scripts for miscellaneous tasks
ta/ Files that are only used when building TAs
out/ Created when building unless a different out directory is specified with O=... on the command

line

2.5.2 core/

Directory Description
arch/ Architecture and platform specific files
arch/arm/ Arm specific architecture and platform files
crypto/ Crypto infrastructure including software implementations of certain algorithms.
drivers/ Various device drivers
include/ Header files of resources exported to the rest of the core
include/crypto/ Include files related to files in /core/crypto
include/drivers/ Include files related to device drivers
include/dt-
bindings/

Include files for the device tree bindings

include/kernel/ Include files related to files in /core/kernel
include/mm/ Include files related to memory management and files in /core/mm
include/tee/ Include files related to files in /core/tee
kernel/ Miscellaneous architecture neutral files
lib/ Libraries that are used by core only
lib/libfdt/ Flat Device Trees manipulation library
lib/libfdt/include/ Include files related to libfdt
lib/libtomcrypt/ Libtomcrypt crypto library
lib/libtomcrypt/include/Include files related to libtomcrypt
lib/libtomcrypt/src/Source files of libtomcrypt
lib/zlib/ Zlib compression library
mm/ Architecture neutral memory management
pta/ Various pseudo TAs
tee/ Architecture neutral TEE files

2.5. File structure 59

OP-TEE Documentation

2.5.3 core/arch/arm/

Directory Description
cpu/ CPU specific settings
crypto/ Architecture specific software implementations of crypto algorithms
dts/ Device tree source files
include/ Header files of resources exported to the rest of the core
include/crypto/ Architecture specific include files related to /core/crypto or /core/arch/arm/crypto files
include/kernel/ Architecture specific include files related to /core/kernel or /core/arch/arm/kernel files
include/mm/ Architecture specific include files related to /core/mm or /core/arch/arm/mm files
include/sm/ Include files related to the secure monitor
include/tee/ Architecture specific include files related to /core/tee or /core/arch/arm/tee files
kernel/ Miscellaneous low level architecure specific files
plat-*/ Specific files for the different supported platform
mm/ Memory management
tee/ TEE files
sm/ Secure Monitor, ARMv7-A only

2.5.4 lib/

Directory Description
libdl/ Implementation of dlopen(), dlsym() and dlclose() used by TAs and ldelf
libdl/include/ Include files for libdl
libmbedtls/ Mbed TLS crypto library
libmbedtls/core/ Glue code only compiled with core to connect with the core internal <crypto/crypto.h> API.
libmbedtls/include/ Include files with configuration of Mbed TLS
libmbedtls/mbedtls/Top directory of the imported Mbed TLS source tree
libmbedtls/mbedtls/include/Mbed TLS include files
libmbedtls/mbedtls/library/Mbed TLS implementation
libunw/ Unwind library
libunw/include/ Include files for libunwnd
libutee/ Libutee which provide the implementation of TEE Internal Core API.
libutee/arch/ Architecture specific implementation
libutee/include/ Include files related to libutee and the header files for TEE Internal Core API
libutils/ The reduced “libc” of OP-TEE
libutils/ext/ Extensions to a standard libc
libutils/ext/arch/ Architecture specific implmementation of the extensions
libu-
tils/ext/include/

Include files related to the extensions

libutils/isoc/ A subset of ISOC
libu-
tils/isoc/arch/

Architecture specific

libu-
tils/isoc/include/

Header files related to the provided subset of ISOC

libu-
tils/isoc/newlib/

Routines imported from newlib

60 Chapter 2. Architecture

OP-TEE Documentation

2.5.5 ta/

Directory Description
trusted_keys Trusted key TA
trusted_keys/includeHeader file of the ABI provided by the trusted key TA
arch Architecture specific files needed to compile a TA
mk Makefile includes needed to build TAs and the TA dev kit
avb TA to support AVB (Android Verified Boot)
avb/include Header file of the ABI provided by the AVB TA
pkcs11 TA to support PKCS#11
pkcs11/src Source code for the PKCS#11 TA
pkcs11/include Header file for the ABI provided by the PKCS#11 TA

2.6 GlobalPlatform API

2.6.1 Introduction

GlobalPlatform works across industries to identify, develop and publish specifications which facilitate the secure and
interoperable deployment and management of multiple embedded applications on secure chip technology. OP-TEE
has support for GlobalPlatform TEE Client API Specification v1.0 (GPD_SPE_007) plus Errata and Precisions 2.0
(GPD_EPR_028) and TEE Internal Core API Specification v1.3.1 (GPD_SPE_010).

2.6.2 TEE Client API

The TEE Client API describes and defines how a client running in a rich operating environment (REE) should commu-
nicate with the TEE. To identify a Trusted Application (TA) to be used, the client provides an UUID. All TA’s exposes
one or several functions. Those functions corresponds to a so called commandID which also is sent by the client.

TEE Contexts

The TEE Context is used for creating a logical connection between the client and the TEE. The context must be initial-
ized before the TEE Session can be created. When the client has completed a job running in secure world, it should
finalize the context and thereby also release resources.

TEE Sessions

Sessions are used to create logical connections between a client and a specific Trusted Application. When the session
has been established the client has opened up the communication channel towards the specified Trusted Application
identified by the UUID. At this stage the client and the Trusted Application can start to exchange data.

2.6. GlobalPlatform API 61

https://globalplatform.org
https://globalplatform.org/specs-library/?filter-committee=tee
https://en.wikipedia.org/wiki/Universally_unique_identifier

OP-TEE Documentation

TEE Shared memory

The TEE Client API describes many ways of sharing memory between the client and the TEE. Some ways are more
efficient than others due to how they are implemented, but they have all their advantages too. For example, using
a temporary memory reference (TEEC_TempMemoryReference) is often convenient, but depending on the situation
often not the most efficient. A temporary memory reference is established internally in the TEE Client library before it
is used, and when the call to secure world has returned it is torn down again. That results in a few extra re-entries into
the TEE.

For more efficient communication a shared memory block (TEEC_SharedMemory) should be used since it can
be reused between calls and also tuned in more ways. A shared memory block can be initialized either with
TEEC_RegisterSharedMemory() or TEEC_AllocateSharedMemory().

TEEC_RegisterSharedMemory() sometimes fails to establish zero-copy shared memory and must in those cases fall
back to a temporary “shadow buffer”. The TEE framework will for instance refuse to register a memory block that
is mapped read-only in the client. Another reason can be if FF-A is used and a part of the memory range has been
registered previously.

TEEC_AllocateSharedMemory() is the best choice to establish zero-copy shared memory. If
TEEC_RegisterSharedMemory() must be used instead because the buffer is allocated in advance or exter-
nally there are still a few things that helps avoid a fallback to a “shadow buffer”. Make sure that the memory range is
normal read/write memory and if possible use page-aligned memory buffers.

TEE Client API example / usage

Below you will find the main functions as defined by GlobalPlatform and are used in the communication between the
client and the TEE.

TEEC_Result TEEC_InitializeContext(
const char* name,
TEEC_Context* context)

void TEEC_FinalizeContext(
TEEC_Context* context)

TEEC_Result TEEC_OpenSession (
TEEC_Context* context,
TEEC_Session* session,
const TEEC_UUID* destination,
uint32_t connectionMethod,
const void* connectionData,
TEEC_Operation* operation,
uint32_t* returnOrigin)

void TEEC_CloseSession (
TEEC_Session* session)

TEEC_Result TEEC_InvokeCommand(
TEEC_Session* session,
uint32_t commandID,
TEEC_Operation* operation,
uint32_t* returnOrigin)

In principle the commands are called in this order:

62 Chapter 2. Architecture

OP-TEE Documentation

TEEC_InitializeContext(...)
TEEC_OpenSession(...)
TEEC_InvokeCommand(...)
TEEC_CloseSession(...)
TEEC_FinalizeContext(...)

It is not uncommon that TEEC_InvokeCommand(...) is called several times in a row when the session has been
established.

For a complete example, please see chapter 5.2 Example 1: Using the TEE Client API in the GlobalPlatform TEE
Client API Specification v1.0.

2.6.3 TEE Internal Core API

The Internal Core API is the API that is exposed to the Trusted Applications running in the secure world. The TEE
Internal API consists of four major parts:

1. Trusted Storage API for Data and Keys

2. Cryptographic Operations API

3. Time API

4. Arithmetical API

Examples / usage

Calling the Internal Core API is done in the same way as described above using Client API. The best place to find
information how this should be done is in the TEE Internal Core API Specification which contains many examples of
how to call the various APIs. One can also have a look at the examples in the optee_examples git.

2.6.4 Extensions

In addition to what is stated in TEE Internal Core API , there are some non-official extensions in OP-TEE.

Trusted Applications should include header file tee_internal_api_extensions.h to import the definitions of the
extensions. For each extension, a configuration directive prefixed CFG_ allows one to disable support for the extension
when building the OP-TEE packages.

Cache Maintenance Support

Following functions have been introduced in order to allow Trusted Applications to operate with the data cache:

TEE_Result TEE_CacheClean(char *buf, size_t len);
TEE_Result TEE_CacheFlush(char *buf, size_t len);
TEE_Result TEE_CacheInvalidate(char *buf, size_t len);

These functions are available to any Trusted Application defined with the flag TA_FLAG_CACHE_MAINTENANCE sets
on, see Cache maintenance Flag. When not set, each function returns the error code TEE_ERROR_NOT_SUPPORTED.
Within these extensions, a Trusted Application is able to operate on the data cache, with the following specification:

2.6. GlobalPlatform API 63

https://globalplatform.org/specs-library/?filter-committee=tee
https://globalplatform.org/specs-library/?filter-committee=tee
https://github.com/linaro-swg/optee_examples

OP-TEE Documentation

Function Description
TEE_CacheClean()Write back to memory any dirty data cache lines. The line is marked as not dirty. The valid bit is

unchanged.
TEE_CacheFlush()Purges any valid data cache lines. Any dirty cache lines are first written back to memory, then the

cache line is invalidated.
TEE_CacheInvalidate()Invalidate any valid data cache lines. Any dirty line are not written back to memory.

In the following two cases, the error code TEE_ERROR_ACCESS_DENIED is returned:

• The memory range has not the write access, that is TEE_MEMORY_ACCESS_WRITE is not set.

• The memory is not user space memory.

You may disable this extension by setting the following configuration variable in conf.mk:

CFG_CACHE_API := n

PKCS#1 v1.5 RSASSA without hash OID

This extension adds identifer``TEE_ALG_RSASSA_PKCS1_V1_5`` to allow signing and verifying messages with
RSASSA-PKCS1-v1_5, in RFC 3447, without including the OID of the hash in the signature. You may disable this
extension by setting the following configuration variable in conf.mk:

CFG_CRYPTO_RSASSA_NA1 := n

The TEE Internal Core API was extended with a new algorithm descriptor.

Algorithm Possible Modes
TEE_ALG_RSASSA_PKCS1_V1_5TEE_MODE_SIGN / TEE_MODE_VERIFY

Algorithm Identifier
TEE_ALG_RSASSA_PKCS1_V1_50xF0000830

Concat KDF

Support for the Concatenation Key Derivation Function (Concat KDF) according to SP 800-56A (Recommendation for
Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography) can be found in OP-TEE. You may
disable this extension by setting the following configuration variable in conf.mk:

CFG_CRYPTO_CONCAT_KDF := n

Implementation notes
All key and parameter sizes must be multiples of 8 bits. That is:

• Input parameters: the shared secret (Z) and OtherInfo.

• Output parameter: the derived key (DerivedKeyingMaterial).

64 Chapter 2. Architecture

https://tools.ietf.org/html/rfc3447#section-8.2
http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf

OP-TEE Documentation

In addition, the maximum size of the derived key is limited by the size of an object of type TEE_TYPE_GENERIC_SECRET
(512 bytes). This implementation does not enforce any requirement on the content of the OtherInfo parameter. It
is the application’s responsibility to make sure this parameter is constructed as specified by the NIST specification if
compliance is desired.

API extension
To support Concat KDF, the TEE Internal Core API v1.3.1 was extended with new algorithm descriptors, new object
types, and new object attributes as described below.

p.95 Add new object type to TEE_PopulateTransientObject
The following entry shall be added to Table 5-8:

Object type Parts
TEE_TYPE_CONCAT_KDF_ZThe TEE_ATTR_CONCAT_KDF_Z part (input shared secret) must be provided.

p.121 Add new algorithms for TEE_AllocateOperation
The following entry shall be added to Table 6-3:

Algorithm Possible Modes
TEE_ALG_CONCAT_KDF_SHA1_DERIVE_KEY
TEE_ALG_CONCAT_KDF_SHA224_DERIVE_KEY
TEE_ALG_CONCAT_KDF_SHA256_DERIVE_KEY
TEE_ALG_CONCAT_KDF_SHA384_DERIVE_KEY
TEE_ALG_CONCAT_KDF_SHA512_DERIVE_KEY
TEE_ALG_CONCAT_KDF_SHA512_DERIVE_KEY

TEE_MODE_DERIVE

p.126 Explain usage of HKDF algorithms in TEE_SetOperationKey
In the bullet list about operation mode, the following shall be added:

• For the Concat KDF algorithms, the only supported mode is TEE_MODE_DERIVE.

p.150 Define TEE_DeriveKey input attributes for new algorithms
The following sentence shall be deleted:

The TEE_DeriveKey function can only be used with the algorithm
TEE_ALG_DH_DERIVE_SHARED_SECRET.

The following entry shall be added to Table 6-7:

Algorithm Possible operation parameters
TEE_ALG_CONCAT_KDF_SHA1_DERIVE_KEY
TEE_ALG_CONCAT_KDF_SHA224_DERIVE_KEY
TEE_ALG_CONCAT_KDF_SHA256_DERIVE_KEY
TEE_ALG_CONCAT_KDF_SHA384_DERIVE_KEY
TEE_ALG_CONCAT_KDF_SHA512_DERIVE_KEY
TEE_ALG_CONCAT_KDF_SHA512_DERIVE_KEY

TEE_ATTR_CONCAT_KDF_DKM_LENGTH:
up to 512 bytes. This
parameter is mandatory:
TEE_ATTR_CONCAT_KDF_OTHER_INFO

p.152 Add new algorithm identifiers
The following entries shall be added to Table 6-8:

2.6. GlobalPlatform API 65

OP-TEE Documentation

Algorithm Identifier
TEE_ALG_CONCAT_KDF_SHA1_DERIVE_KEY 0x800020C1
TEE_ALG_CONCAT_KDF_SHA224_DERIVE_KEY 0x800030C1
TEE_ALG_CONCAT_KDF_SHA256_DERIVE_KEY 0x800040C1
TEE_ALG_CONCAT_KDF_SHA384_DERIVE_KEY 0x800050C1
TEE_ALG_CONCAT_KDF_SHA512_DERIVE_KEY 0x800060C1

p.154 Define new main algorithm
In Table 6-9 in section 6.10.1, a new value shall be added to the value column for row bits [7:0]:

Bits Function Value
Bits [7:0] Identifiy the main underlying algorithm itself . . .

0xC1: Concat KDF

The function column for bits[15:12] shall also be modified to read:

Bits Function Value
Bits [15:12] Define the message digest for asymmetric signature algorithms or Concat KDF

p.155 Add new object type for Concat KDF input shared secret
The following entry shall be added to Table 6-10:

Name Identifier Possible sizes
TEE_TYPE_CONCAT_KDF_Z 0xA10000C1 8 to 4096 bits (multiple of 8)

p.156 Add new operation attributes for Concat KDF
The following entries shall be added to Table 6-11:

Name Value Pro-
tec-
tion

Type Comment

TEE_ATTR_CONCAT_KDF_Z0xC00001C1Pro-
tected

Ref The shared secret (Z)

TEE_ATTR_CONCAT_KDF_OTHER_INFO0xD00002C1Pub-
lic

Ref OtherInfo

TEE_ATTR_CONCAT_KDF_DKM_LENGTH0xF00003C1Pub-
lic

Value The length (in bytes) of the derived keying material to be
generated, maximum 512. This is KeyDataLen / 8.

66 Chapter 2. Architecture

OP-TEE Documentation

HKDF

OP-TEE implements the HMAC-based Extract-and-Expand Key Derivation Function (HKDF) as specified in RFC
5869. This file documents the extensions to the TEE Internal Core API v1.3.1 that were implemented to support this
algorithm.

Note that the implementation follows the recommendations of version 1.3.1 of the specification for adding new algo-
rithms. It should make it compatible with future changes to the official specification. You can disable this extension by
setting the following in conf.mk:

CFG_CRYPTO_HKDF := n

p.95 Add new object type to TEE_PopulateTransientObject
The following entry shall be added to Table 5-8:

Object type Parts
TEE_TYPE_HKDF_IKM The TEE_ATTR_HKDF_IKM (Input Keying Material) part must be provided.

p.121 Add new algorithms for TEE_AllocateOperation
The following entry shall be added to Table 6-3:

Algorithm Pos-
sible
Modes

TEE_ALG_HKDF_MD5_DERIVE_KEY TEE_ALG_HKDF_SHA1_DERIVE_KEY
TEE_ALG_HKDF_SHA224_DERIVE_KEY TEE_ALG_HKDF_SHA256_DERIVE_KEY
TEE_ALG_HKDF_SHA384_DERIVE_KEY TEE_ALG_HKDF_SHA512_DERIVE_KEY
TEE_ALG_HKDF_SHA512_DERIVE_KEY

TEE_MODE_DERIVE

p.126 Explain usage of HKDF algorithms in TEE_SetOperationKey
In the bullet list about operation mode, the following shall be added:

• For the HKDF algorithms, the only supported mode is TEE_MODE_DERIVE.

p.150 Define TEE_DeriveKey input attributes for new algorithms
The following sentence shall be deleted:

The TEE_DeriveKey function can only be used with the algorithm
TEE_ALG_DH_DERIVE_SHARED_SECRET

The following entry shall be added to Table 6-7:

Algorithm Possible operation parameters
TEE_ALG_HKDF_MD5_DERIVE_KEY
TEE_ALG_HKDF_SHA1_DERIVE_KEY
TEE_ALG_HKDF_SHA224_DERIVE_KEY
TEE_ALG_HKDF_SHA256_DERIVE_KEY
TEE_ALG_HKDF_SHA384_DERIVE_KEY
TEE_ALG_HKDF_SHA512_DERIVE_KEY
TEE_ALG_HKDF_SHA512_DERIVE_KEY

TEE_ATTR_HKDF_OKM_LENGTH: Number
of bytes in the Output Keying Material
TEE_ATTR_HKDF_SALT (optional) Salt to be
used during the extract step
TEE_ATTR_HKDF_INFO (optional) Info to be
used during the expand step

2.6. GlobalPlatform API 67

https://tools.ietf.org/html/rfc5869
https://tools.ietf.org/html/rfc5869

OP-TEE Documentation

p.152 Add new algorithm identifiers
The following entries shall be added to Table 6-8:

Algorithm Identifier
TEE_ALG_HKDF_MD5_DERIVE_KEY 0x800010C0
TEE_ALG_HKDF_SHA1_DERIVE_KEY 0x800020C0
TEE_ALG_HKDF_SHA224_DERIVE_KEY 0x800030C0
TEE_ALG_HKDF_SHA256_DERIVE_KEY 0x800040C0
TEE_ALG_HKDF_SHA384_DERIVE_KEY 0x800050C0
TEE_ALG_HKDF_SHA512_DERIVE_KEY 0x800060C0

p.154 Define new main algorithm

In Table 6-9 in section 6.10.1, a new value shall be added to the value column for row bits [7:0]:

Bits Function Value
Bits [7:0] Identifiy the main underlying algorithm itself . . .

0xC0: HKDF

The function column for bits[15:12] shall also be modified to read:

Bits Function Value
Bits [15:12] Define the message digest for asymmetric signature algorithms or HKDF

p.155 Add new object type for HKDF input keying material
The following entry shall be added to Table 6-10:

Name Identifier Possible sizes
TEE_TYPE_HKDF_IKM 0xA10000C0 8 to 4096 bits (multiple of 8)

p.156 Add new operation attributes for HKDF salt and info
The following entries shall be added to Table 6-11:

Name Value Pro-
tection

Type Comment

TEE_ATTR_HKDF_IKM 0xC00001C0Pro-
tected

Ref

TEE_ATTR_HKDF_SALT 0xD00002C0Public Ref
TEE_ATTR_HKDF_INFO 0xD00003C0Public Ref
TEE_ATTR_HKDF_OKM_LENGTH 0xF00004C0Public Value

68 Chapter 2. Architecture

OP-TEE Documentation

PBKDF2

This document describes the OP-TEE implementation of the key derivation function, PBKDF2 as specified in RFC
2898 section 5.2. This RFC is a republication of PKCS #5 v2.0 from RSA Laboratories’ Public-Key Cryptography
Standards (PKCS) series. You may disable this extension by setting the following configuration variable in conf.mk:

CFG_CRYPTO_PBKDF2 := n

API extension
To support PBKDF2, the TEE Internal Core API v1.3.1 was extended with a new algorithm descriptor, new object
types, and new object attributes as described below.

p.95 Add new object type to TEE_PopulateTransientObject
The following entry shall be added to Table 5-8:

Object type Parts
TEE_TYPE_PBKDF2_PASSWORD The TEE_ATTR_PBKDF2_PASSWORD part must be provided.

p.121 Add new algorithms for TEE_AllocateOperation
The following entry shall be added to Table 6-3:

Algorithm Possible Modes
TEE_ALG_PBKDF2_HMAC_SHA1_DERIVE_KEY TEE_MODE_DERIVE

p.126 Explain usage of PBKDF2 algorithm in TEE_SetOperationKey
In the bullet list about operation mode, the following shall be added:

• For the PBKDF2 algorithm, the only supported mode is TEE_MODE_DERIVE.

p.150 Define TEE_DeriveKey input attributes for new algorithms
The following sentence shall be deleted:

The TEE_DeriveKey function can only be used with the algorithm
TEE_ALG_DH_DERIVE_SHARED_SECRET

The following entry shall be added to Table 6-7:

Algorithm Possible operation parameters
TEE_ALG_PBKDF2_HMAC_SHA1_DERIVE_KEYTEE_ATTR_PBKDF2_DKM_LENGTH: up to 512 bytes. This parameter is mandatory.

TEE_ATTR_PBKDF2_SALT
TEE_ATTR_PBKDF2_ITERATION_COUNT: This parameter is mandatory.

p.152 Add new algorithm identifiers
The following entries shall be added to Table 6-8:

Algorithm Identifier
TEE_ALG_PBKDF2_HMAC_SHA1_DERIVE_KEY 0x800020C2

2.6. GlobalPlatform API 69

https://www.ietf.org/rfc/rfc2898.txt
https://www.ietf.org/rfc/rfc2898.txt

OP-TEE Documentation

p.154 Define new main algorithm
In Table 6-9 in section 6.10.1, a new value shall be added to the value column for row bits [7:0]:

Bits Function Value
Bits [7:0] Identifiy the main underlying algorithm itself . . .

0xC2: PBKDF2

The function column for bits[15:12] shall also be modified to read:

Bits Function Value
Bits [15:12] Define the message digest for asymmetric signature algorithms or PBKDF2

p.155 Add new object type for PBKDF2 password
The following entry shall be added to Table 6-10:

Name Identifier Possible sizes
TEE_TYPE_PBKDF2_PASSWORD 0xA10000C2 8 to 4096 bits (multiple of 8)

p.156 Add new operation attributes for Concat KDF
The following entries shall be added to Table 6-11:

Name Value Pro-
tection

Type Comment

TEE_ATTR_PBKDF2_PASSWORD 0xC00001C2Pro-
tected

Ref

TEE_ATTR_PBKDF2_SALT 0xD00002C2Public Ref
TEE_ATTR_PBKDF2_ITERATION_COUNT0xF00003C2Public Value
TEE_ATTR_PBKDF2_DKM_LENGTH 0xF00004C2Public Value The length (in bytes) of the derived key-

ing material to be generated, maximum
512.

Loadable plugins framework

This framework makes the supplicant a bit more flexible in terms of providing services. It is possible to design any
REE service for the TEE as a tee-supplicant plugin. It makes it easy to:

• add new features to the supplicant that aren’t needed in upstream, e.g. Rich OS-specific services

• sync an own fork of the supplicant with the upstream version

To create a plugin, developers have to implement the following structure from the public/tee_plugin_method.h
file from the optee_client git.:

struct plugin_method {
const char *name; /* short friendly name of the plugin */
TEEC_UUID uuid;
TEEC_Result (*init)(void);

(continues on next page)

70 Chapter 2. Architecture

https://github.com/OP-TEE/optee_client

OP-TEE Documentation

(continued from previous page)

TEEC_Result (*invoke)(unsigned int cmd, unsigned int sub_cmd,
void *data, size_t in_len, size_t *out_len);

};

The plugin framework is based on the RPC - OPTEE_MSG_RPC_CMD_PLUGIN. This is a unified interface between TEE
and plugins. TEE can only access the plugins by its UUID.

After implementing this structure, a plugin has to be compiled as a shared object. The objects have to be placed into
the directory defined by CFG_TEE_PLUGIN_LOAD_PATH. This path can be set in the config.mk file in the optee_client
git. By default it is set to /usr/lib/tee-supplicant/plugins/.
The supplicant loads all of the plugins from the directory during the startup process using libdl. After this, any requests
to plugins from TEE will be processed in the common RPC handler.

On TEE side users can use any plugin by its UUID from TAs code and from the OP-TEE kernel code. The following
function has been introduced like an extension of the TEE API to allow Trusted Applications to operate with plugins:

/*
* tee_invoke_supp_plugin() - invoke a tee-supplicant's plugin
* @uuid: uuid of the plugin
* @cmd: command for the plugin
* @sub_cmd: subcommand for the plugin
* @buf: data [to/from] the plugin [in/out]
* @len: length of the input buf
* @outlen: pointer to length of the output data (if they will be used)
*
* Return TEE_SUCCESS on success or TEE_ERRROR_* on failure.
*/
TEE_Result tee_invoke_supp_plugin(const TEE_UUID *uuid, uint32_t cmd,

uint32_t sub_cmd, void *buf, size_t len,
size_t *outlen);

This API calls the system-pta, which uses the RPC to call a plugin. See OPTEE_RPC_CMD_SUPP_PLUGIN in the
core/include/optee_rpc_cmd.h file from optee_os git. If there is a need to use plugins from the OP-TEE kernel,
then the following function can be called directly:

TEE_Result tee_invoke_supp_plugin_rpc(const TEE_UUID *uuid, uint32_t cmd,
uint32_t sub_cmd, void *buf, size_t len,
size_t *outlen);

Note: One buffer is used for input data to a plugin and for output data from a plugin. See an example of using this
feature in the optee_examples git.

2.6. GlobalPlatform API 71

https://github.com/OP-TEE/optee_client
https://github.com/OP-TEE/optee_os
https://github.com/linaro-swg/optee_examples

OP-TEE Documentation

2.7 Libraries

2.7.1 libutils

OP-TEE core and OP-TEE development kit for Trusted Application provide a standard C library that is named libutils.
It implements many standard functions like snprintf(), strncmp(), memcpy(), malloc(). qsort(), and many
more but not all standard C library functions.

Note however that Trusted Applications implemented in C should use GP TEE Internal Core API functions rather
than their standard C library function equivalent (e.g. TEE_MemMove() instead of memcpy() and memmove(), or
TEE_Malloc() instead of malloc() and friends). This makes those TAs implementation more portable to other GP
TEE compliant environments.

When CFG_ULIBS_SHARED is enabled, libutils is assigned UUID 71855bba-6055-4293-a63f-b0963a737360.

2.7.2 libutee

The TEE Internal Core API describes services that are provided to Trusted Applications. libutee is a library that
implements this API.

libutee is designed as a userland library specifically dedicated to OP-TEE Trusted Applications and aims at being
executed in the non-privileged secure userspace.

Some services for this API are fully statically implemented inside the libutee library while some services for the API
are implemented inside the OP-TEE core (privileged level) and libutee calls such services through system calls.

When CFG_ULIBS_SHARED is enabled, libutee is assigned UUID 4b3d937e-d57e-418b-8673-1c04f2420226.

2.7.3 libmbedtls

OP-TEE OS source tree provides support of the Mbed TLS library, named libmbedtls.
A specific build sequence can compile an instance of libmbedtls and link it to OP-TEE core. Another build sequence
compiles an instance of libmbedtls that can be linked with Trusted Applications.

When Mbed TLS is embedded in OP-TEE core, it is used as the default software implementation for most cryptog-
raphy operations. When so, libtomcrypt is still used as default software implementation for few crypto operations.
Embedding Mbed TLS in OP-TEE core requires CFG_CRYPTOLIB_NAME=mbedtls and CFG_CRYPTOLIB_DIR=core/
lib/libmbedtls.

When CFG_ULIBS_SHARED is enabled, libmbedtls userland library is assigned UUID 87bb6ae8-4b1d-49fe-9986-
2b966132c309.

2.7.4 libunw

OP-TEE OS source tree implements execution stack back trace debug facilities available to both OP-TEE core and
Trusted Applications. The feature relies on a library named libunw.

libunw, when linked to a Trusted Application, is always linked as a static library.

72 Chapter 2. Architecture

OP-TEE Documentation

2.7.5 libdl

libdl library implement API function dlopen(), dlsym() and dlclose() used by Trusted Applications to support
dynamic shared libraries.

When CFG_ULIBS_SHARED is enabled, libdl is assigned UUID be807bbd-81e1-4dc4-bd99-3d363f240ece.

2.7.6 Static vs Shared libraries

OP-TEE core supports only static libraries that are linked at build time to produce the monolithic OP-TEE core image.

OP-TEE Trusted Applications can support both static and shared libraries. In the latter case, each shared library is
identified by a UUID and OP-TEE OS is in charge of dynamically loading the required shared libraries in the address
space of the Trusted Application when this one uses a resource of the related library.

In order to support shared library, OP-TEE OS shall be built with CFG_ULIBS_SHARED=y. Shared library binary
images are generated as .elf and .ta files, like Trusted Applications are, and shall be installed the same way as Trusted
Applications are, see ref:ta_locations.

2.8 Porting guidelines

This document serves a dual purpose:

• Serve as a base for getting OP-TEE up and running on a new device with initial xtest validation passing. This is
the first part of this document (section 2).

• Highlight the missing pieces if you intend to make a real secure product, that is what the second part of this
document is about.

We are trying our best to implement full end to end security in OP-TEE in a generic way, but due to the nature of
devices being different, NDA etc, it is not always possible for us to do so and in those cases, we most often try to write a
generic API, but we will just stub the code. This porting guideline highlights the missing pieces that must be addressed
in a real secure consumer device. Hopefully we will sooner or later get access to devices where we at least can make
reference implementations publicly available to everyone for the missing pieces we are talking about here.

2.8.1 Add a new platform

The first thing you need to do after you have decided to port OP-TEE to another device is to add a new platform device.
That can either be adding a new platform variant (PLATFORM_FLAVOR) if it is a device from a family already supported,
or it can be a brand new platform family (PLATFORM). Typically this initial setup involve configuring UART, memory
addresses etc. For simplicity let us call our fictive platform for “gendev” just so we have something to refer to when
writing examples further down.

core/arch/arm

In core/arch/arm you will find all the currently supported devices. That is where you are supposed to add a new
platform or modify an existing one. Typically you will find this set of files in a specific platform folder:

$ ls
conf.mk main.c platform_config.h sub.mk

So for the gendev platform it means that the files should be placed in this folder:

2.8. Porting guidelines 73

OP-TEE Documentation

core/arch/arm/plat-gendev

conf.mk
This is the device specific makefile where you define configurations unique to your platform. This mainly comprises
two things:

• OP-TEE configuration variables (CFG_), which may be assigned values in two ways. CFG_FOO ?= bar should
be used to provide a default value that may be modified at compile time. On the other hand, variables that must
be set to some value and cannot be modified should be set by: $(call force,CFG_FOO,bar).

• Compiler flags for the TEE core, the user mode libraries and the Trusted Applications, which may be added to
macros used by the build system. Please see Configuration and flags and similar sections on that page.

It is recommended to use a existing platform configuration file as a starting point. For instance, core/arch/arm/plat-
hikey/conf.mk.

The platform conf.mk file should at least define the default platform flavor for the platform, the core configurations
(architecture and number of cores), the main configuration directives (generic boot, arm trusted firmware support,
generic time source, console driver, etc. . .) and some platform default configuration settings.

PLATFORM_FLAVOR ?= hikey

include core/arch/arm/cpu/cortex-armv8-0.mk

$(call force,CFG_TEE_CORE_NB_CORE,8)
$(call force,CFG_GENERIC_BOOT,y)
$(call force,CFG_PL011,y)
$(call force,CFG_PM_STUBS,y)
$(call force,CFG_SECURE_TIME_SOURCE_CNTPCT,y)
$(call force,CFG_WITH_ARM_TRUSTED_FW,y)
$(call force,CFG_WITH_LPAE,y)

ta-targets = ta_arm32
ta-targets += ta_arm64

CFG_NUM_THREADS ?= 8
CFG_CRYPTO_WITH_CE ?= y
CFG_WITH_STACK_CANARIES ?= y
CFG_CONSOLE_UART ?= 3
CFG_DRAM_SIZE_GB ?= 2

main.c
This platform specific file will contain power management handlers and code related to the UART. We will talk more
about the information related to the handlers further down in this document. For our gendev device it could look like
this (here we are excluding the necessary license header to save some space):

#include <console.h>
#include <drivers/serial8250_uart.h>
#include <kernel/generic_boot.h>
#include <kernel/panic.h>
#include <kernel/pm_stubs.h>
#include <mm/core_mmu.h>
#include <platform_config.h>
#include <stdint.h>

(continues on next page)

74 Chapter 2. Architecture

https://github.com/OP-TEE/optee_os/blob/master/core/arch/arm/plat-hikey/conf.mk
https://github.com/OP-TEE/optee_os/blob/master/core/arch/arm/plat-hikey/conf.mk

OP-TEE Documentation

(continued from previous page)

#include <tee/entry_fast.h>
#include <tee/entry_std.h>

static void main_fiq(void)
{

panic();
}

static const struct thread_handlers handlers = {
.std_smc = tee_entry_std,
.fast_smc = tee_entry_fast,
.nintr = main_fiq,
.cpu_on = cpu_on_handler,
.cpu_off = pm_do_nothing,
.cpu_suspend = pm_do_nothing,
.cpu_resume = pm_do_nothing,
.system_off = pm_do_nothing,
.system_reset = pm_do_nothing,

};

const struct thread_handlers *generic_boot_get_handlers(void)
{

return &handlers;
}

/*
* Register the physical memory area for peripherals etc. Here we are
* registering the UART console.
*/
register_phys_mem(MEM_AREA_IO_NSEC, CONSOLE_UART_BASE, SERIAL8250_UART_REG_SIZE);

static struct serial8250_uart_data console_data;

void console_init(void)
{

serial8250_uart_init(&console_data, CONSOLE_UART_BASE,
CONSOLE_UART_CLK_IN_HZ, CONSOLE_BAUDRATE);

register_serial_console(&console_data.chip);
}

platform_config.h
This is a mandatory header file for every platform, since there are several files relaying upon the existence of this
particular file. This file is where you will find the major differences between different platforms, since this is where
you do the memory configuration, define base addresses etc. we are going to list a few here, but it probably makes
more sense to have a look at the already existing platform_config.h files for the other platforms. Our fictive gendev
could look like this:

#ifndef PLATFORM_CONFIG_H
#define PLATFORM_CONFIG_H

/* Make stacks aligned to data cache line length */
#define STACK_ALIGNMENT 64

(continues on next page)

2.8. Porting guidelines 75

OP-TEE Documentation

(continued from previous page)

/* 8250 UART */
#define CONSOLE_UART_BASE 0xcafebabe /* UART0 */
#define CONSOLE_BAUDRATE 115200
#define CONSOLE_UART_CLK_IN_HZ 19200000

/* Optional: when used with CFG_WITH_PAGER, defines the device SRAM */
#define TZSRAM_BASE 0x3F000000
#define TZSRAM_SIZE (200 * 1024)

/* Mandatory main secure RAM usually DDR */
#define TZDRAM_BASE 0x60000000
#define TZDRAM_SIZE (32 * 1024 * 1024)

/* Mandatory TEE RAM location and core load address */
#define TEE_RAM_START TZDRAM_BASE
#define TEE_RAM_PH_SIZE TEE_RAM_VA_SIZE
#define TEE_RAM_VA_SIZE (4 * 1024 * 1024)
#define TEE_LOAD_ADDR (TZDRAM_BASE + 0x20000)

/* Mandatory TA RAM (external less secure RAM) */
#define TA_RAM_START (TZDRAM_BASE + TEE_RAM_VA_SIZE)
#define TA_RAM_SIZE (TZDRAM_SIZE - TEE_RAM_VA_SIZE)

/* Mandatory: for static SHM, need a hardcoded physical address */
#define TEE_SHMEM_START 0x08000000
#define TEE_SHMEM_SIZE (4 * 1024 * 1024)

#endif /* PLATFORM_CONFIG_H */

This is minimal amount of information in the platform_config.h file. I.e, the memory layout for on-chip and external
RAM. Note that parts of the DDR typically will need to be shared with normal world, so there is need for some kind of
memory firewall for this (more about that further down). As you can see we have also added the UART configuration
here, i.e., the DEVICE0_xyz part.

Official board support in OP-TEE?

We do encourage everyone to submit their board support to the OP-TEE project itself, so it becomes part of the official
releases and will be maintained by the OP-TEE community itself. If you intend to do so, then there are a few more
things that you are supposed to do.

Update platforms supported
There is a section at the Platforms supported page that lists all devices officially supported in OP-TEE, that is where
you also shall list your device. It should contain the name of the platform, then composite PLATFORM flag and whether
the device is publicly available or not. If there is a product page on the internet for the device, please also create a link
when writing the device name.

Update .shippable.yml
Since we are using Shippable to test pull requests etc, we would like that you also add your device to the .shippable.yml
file, so that it will at least be built when someone is doing a pull request. Add a line at the end of file:

76 Chapter 2. Architecture

https://github.com/OP-TEE/optee_os/blob/master/.shippable.yml

OP-TEE Documentation

- _make PLATFORM=<platform-name>_

Maintainer
If you are submitting the board support upstream we are going to ask you to become the maintainer for the device you
have added. This means that you should also update the MAINTAINERS.md file accordingly. By being a maintainer
for a device you are responsible to keep it up to date and you will be asked every quarter as part of the OP-TEE release
schedule to test your device running the latest OP-TEE software.

Update build.git and manifest.git
This isn’t strictly necessary, but we are trying to create and maintain OP-TEE developer builds that should make it easy
to setup, build and deploy OP-TEE on various devices. We encourage all maintainers to do the same for the boards
they are in charge of. Therefore please consider creating a new manifest (and a new *.mk in build) for the device you
have added to OP-TEE.

2.8.2 Hardware Unique Key

Most devices have some kind of Hardware Unique Key (HUK) that is mainly used to derive other keys. The HUK
could for example be used when deriving keys used in secure storage etc. The important thing with the HUK is that
it needs to be well protected and in the best case the HUK should never ever be readable directly from software, not
even from the secure side. There are different solutions to this, crypto accelerator might have support for it or, it could
involve another secure co-processor.

In OP-TEE the HUK is just stubbed and you will see that in the function called tee_otp_get_hw_unique_key(...)
in core/include/kernel/tee_common_otp.h. In a real secure product you must replace this with something else. If your
device lacks the hardware support for a HUK, then you must at least change this to something else than just zeroes. But,
remember it is not good secure practice to store a key in software, especially not the key that is the root for everything
else, so this is not something we recommend that you should do.

2.8.3 Secure Clock

The Time API in GlobalPlatform Internal Core API specification defines three sources of time; system time, TA persis-
tent time and REE time. The REE time is by nature considered as an unsecure source of time, but the other two should in
a fully trustable hardware make use of trustable source of time, i.e., a secure clock. Note that from GlobalPlatform point
of view it is not required to make use of a secure clock, i.e., it is OK to use time from REE, but the level of trust should
be reflected by the gpd.tee.systemTime.protectionLevel property and the gpd.tee.TAPersistentTime.
protectionLevel property (100=REE controlled clock, 1000=TEE controlled clock). So the functions that one needs
to pay attention to are tee_time_get_sys_time(...) and tee_time_get_ta_time(...). If your hardware has a
secure clock, then you probably want to change the implementation there to instead use the secure clock (and then you
would also need to update the property accordingly, i.e., tee_time_get_sys_time_protection_level() and the
variable ta_time_prot_lvl in tee_svc.c).

2.8.4 Root and Chain of Trust

To be able to assure that your devices are running the (untampered) binaries you intended to run you will need to
establish some kind of trust anchor on the devices.

The most common way of doing that is to put the root public key in some read only memory on the device. Quite often
SoC’s/OEM’s stores public key(s) directly or the hash(es) of the public key(s) in OTP. When the boot ROM (which
indeed needs to be ROM) is about to load the first stage bootloader it typically reads the public key from the software
binary itself, hash the key and compare it to the key in OTP. If they are matching, then the boot ROM can be sure that
the first stage bootloader was indeed signed with the corresponding private key.

2.8. Porting guidelines 77

https://github.com/OP-TEE/optee_os/blob/master/MAINTAINERS
https://github.com/OP-TEE/optee_os/blob/master/core/include/kernel/tee_common_otp.h
https://en.wikipedia.org/wiki/Programmable_read-only_memory
https://en.wikipedia.org/wiki/Programmable_read-only_memory

OP-TEE Documentation

In OP-TEE you will not find any code at all related to this and this is a good example when it is hard for us to do this
in a generic way since device manufacturers all tend to do this in their own unique way and they are not very keen on
sharing their low level boot details and security implementation with the rest of the world. This is especially true on
ARMv7-A. For ARMv8-A it looks bit better, since Arm in Trusted Firmware A have implemented and defined how a
abstract the chain of trust (see auth-framework.rst). We have successfully verified OP-TEE by using the authentication
framework from Trusted Firmware A (see Secure boot for the details).

2.8.5 Hardware Crypto IP

By default OP-TEE uses a software crypto library (currently mbed TLS and LibTomCrypt) and you have the ability
to enable Crypto Extensions that were introduced with ARMv8-A (if the device is capable of that). Some of the
devices supported in OP-TEE OS repository have hardware crypto capabilities. A framework, named drvcrypt has
been designed to integrate them. The drvcrypt_register_*()` API functions allow drivers to register support for given
cryptographic operations in OP-TEE core crypto API. Our Cryptographic implementation page describes in detail how
the Crypto API is integrated.

2.8.6 Random Number Generator

By default OP-TEE is configured with a software PRNG. The entropy is added to software PRNG at various places,
but unfortunately it is still quite easy to predict the data added as entropy. As a consequence, unless the RNG is based
on hardware the generated random will be quite weak.

If your platform has a hardware entropy source, you should set CFG_WITH_SOFTWARE_PRNG to n, and provide an
implementation for hw_get_random_bytes(), which returns multiple bytes of entropy.

When CFG_WITH_SOFTWARE_PRNG=n, the platform can enable a PTA service for normal world to retrieve good quality
random bytes. See configuration switches CFG_HWRNG_PTA and CFG_HWRNG_QUALITY, from 0 to 1024.

When CFG_WITH_SOFTWARE_PRNG=n, the random number generator is made available to OP-TEE drivers and
frameworks, including Trusted Applications (thoguh GP TEE Internal Core API) and normal world (when
CFG_HWRNG_PTA=y).

2.8.7 Power Management / PSCI

In the Add a new platform section where we talked about the file main.c, we added a couple of handlers related to
power management, we are talking about the following lines:

.cpu_on = cpu_on_handler,

.cpu_off = pm_do_nothing,

.cpu_suspend = pm_do_nothing,

.cpu_resume = pm_do_nothing,

.system_off = pm_do_nothing,

.system_reset = pm_do_nothing,

The only function that actually does something there is the cpu_on function, the rest of them are stubbed. The main
reason for that is because we think that how to suspend and resume is a device dependent thing. The code in OP-TEE
is prepared so that callbacks etc from Trusted Firmware A will be routed to OP-TEE, but since the function(s) are just
stubbed we will not do anything and just return. In a real production device, you would probably want to save and
restore CPU states, secure hardware IPs’ registers and TZASC and other memory firewall related setting when these
callbacks are being called.

78 Chapter 2. Architecture

https://github.com/ARM-software/arm-trusted-firmware/blob/master/docs/auth-framework.rst

OP-TEE Documentation

2.8.8 Memory firewalls / TZASC

Arm have defined a system IP / SoC peripheral called TrustZone Address Space Controller (TZASC, see TZC-380 and
TZC-400). TZASC can be used to configure DDR memory into separate regions in the physcial address space, where
each region can have an individual security level setting. After enabling TZASC, it will perform security checks on
transactions to memory or peripherals. It is not always the case that TZASC is on a device, in some cases the SoC has
developed something equivalent. In OP-TEE this is very well reflected, i.e., different platforms have different ways of
protecting their memory. On ARMv8-A platforms we are in most of the cases using Trusted Firmware A as the boot
firmware and there the secure bootloader is the one that configures secure vs non-secure memory using TZASC (see
plat_arm_security_setup in TF-A). The takeaway here is that you must make sure that you have configured whatever
memory firewall your device has such that it has a secure and a non-secure memory area.

2.8.9 Trusted Application private/public keypair

By default all Trusted Applications (TA’s) are signed with the pre-generated 2048-bit RSA development key (private
key). This key is located in the keys folder (in the root of optee_os.git) and is named default_ta.pem. This key
must be replaced with your own key and you should never ever check-in this private key in the source code tree when
in use in a real product. The recommended way to store private keys is to use some kind of HSM (Hardware Security
Module), but an alternative would be temporary put the private key on a computer considered as secure when you are
about to sign TA’s intended to be used in real products. Typically it is only a few number of people having access to
this type of key in company. The key handling in OP-TEE is currently a bit limited since we only support a single
key which is used for all TA’s. We have plans on extending this to make it a bit more flexible. Exactly when that will
happen has not been decided yet.

2.8.10 Platform ports

OP-TEE is a reference implementation for developers and device manufacturers. This also implies that there are certain
configurations and settings that cannot be done in OP-TEE reference code. In short, there are cases when the default
configuration hasn’t enabled all necessary security features for the end product. There are a couple of reasons for that.

• Chipmakers and Semiconductors might only share specifications telling how to securely configure their devices
with partners who have signed an NDA with them.

• In some cases a setting might be perfectly fine when OP-TEE is used in one particular environment, but the same
setting might be insecure in another environment.

Because of this we always urge companies and device manufacturers making the end product to follow the security
guidelines from the chipmaker they are basing their products on. Refer also to Platform documentation

2.9 Secure boot

2.9.1 Armv8-A - Using the authentication framework in TF-A

This section gives a brief description on how to enable the verification of OP-TEE using the authentication framework
in Trusted Firmware A (TF-A), i.e., something that could be used in an Armv8-A environment.

According to user-guide.rst, there is no additional specific build options for the verification of OP-TEE. If we have
enabled the authentication framework and specified the BL32 build option when building TF-A, the BL32 related
certificates will be created automatically by the cert_create tool, and then these certificates will be verified during
booting up.

To enable the authentication framework, the following steps should be followed according to user-guide.rst. For more
details about the authentication framework, please see auth-framework.rst and trusted-board-boot.rst.

2.9. Secure boot 79

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0431c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.100325_0001_02_en/index.html
https://github.com/ARM-software/arm-trusted-firmware/search?utf8=%E2%9C%93&q=plat_arm_security_setup&type=
https://en.wikipedia.org/wiki/Hardware_security_module
https://github.com/ARM-software/arm-trusted-firmware/blob/master/docs/getting_started/user-guide.rst
https://github.com/ARM-software/arm-trusted-firmware/blob/master/docs/getting_started/user-guide.rst
https://github.com/ARM-software/arm-trusted-firmware/blob/master/docs/design/auth-framework.rst
https://github.com/ARM-software/arm-trusted-firmware/blob/master/docs/design/trusted-board-boot.rst

OP-TEE Documentation

• Check out a recent version of the mbed TLS repository and then switch to tag mbedtls-2.2.0

• Besides the normal build options, add the following build options for TF-A

MBEDTLS_DIR=<path of the directory containing mbed TLS sources>
TRUSTED_BOARD_BOOT=1
GENERATE_COT=1
ARM_ROTPK_LOCATION=devel_rsa
ROT_KEY=<TF-A-PATH/plat/arm/board/common/rotpk/arm_rotprivk_rsa.pem>

Above steps have been tested on FVP platform, all verification steps are OK and xtest runs successfully without regres-
sion.

2.9.2 Armv7-A systems

Unlike for Armv8-A systems where one can use a more standardized way of doing secure boot by leverage the authen-
tication framework as described above, most device manufacturers have their own way of doing secure boot. Please
reach out directly to the manufacturer for the device you are working with to be able to understand how to do secure
boot on their devices.

Note however that TF-A supports Armv7-A with Trustzone extension and we strongly encourage one to look at TF-A
and use its BL2 as secure boot loader.

2.10 Secure storage

2.10.1 Background

Secure Storage in OP-TEE is implemented according to what has been defined in GlobalPlatform’s TEE Internal Core
API (here called Trusted Storage). This specification mandates that it should be possible to store general-purpose data
and key material that guarantees confidentiality and integrity of the data stored and the atomicity of the operations that
modifies the storage (atomicity here means that either the entire operation completes successfully or no write is done).

There are currently two secure storage implementations in OP-TEE:

• The first one relies on the normal world (REE) file system. It is described in this document and is the default
implementation. It is enabled at compile time by CFG_REE_FS=y.

• The second one makes use of the Replay Protected Memory Block (RPMB) partition of an eMMC device, and
is enabled by setting CFG_RPMB_FS=y. It is described in RPMB Secure Storage.

It is possible to use the normal world file systems and the RPMB implementations simultaneously. For this, two OP-
TEE specific storage identifiers have been defined: TEE_STORAGE_PRIVATE_REE and TEE_STORAGE_PRIVATE_RPMB.
Depending on the compile-time configuration, one or several values may be used. The value TEE_STORAGE_PRIVATE
selects the REE FS when available, otherwise the RPMB FS (in this order).

80 Chapter 2. Architecture

https://github.com/ARMmbed/mbedtls.git

OP-TEE Documentation

2.10.2 REE FS Secure Storage

Fig. 15: Secure Storage System Architecture

Source Files in OP-TEE OS

Table 4: Secure storage files

Source file Purpose
core/tee/tee_svc_storage.cTEE trusted storage service calls
core/tee/tee_ree_fs.cTEE file system & REE file operation interface
core/tee/fs_htree.cHash tree
core/tee/tee_fs_key_manager.cKey manager
lib/libutee/ GlobalPlatform Internal API library

Basic File Operation Flow

When a TA is calling the write function provided by GP Trusted Storage API to write data to a persistent object, a
corresponding syscall implemented in TEE Trusted Storage Service will be called, which in turn will invoke a series of
TEE file operations to store the data. TEE file system will then encrypt the data and send REE file operation commands
and the encrypted data to TEE supplicant by a series of RPC messages. TEE supplicant will receive the messages and
store the encrypted data accordingly to the Linux file system. Reading files are handled in a similar manner.

2.10. Secure storage 81

https://github.com/OP-TEE/optee_os/blob/master/core/tee/tee_svc_storage.c
https://github.com/OP-TEE/optee_os/blob/master/core/tee/tee_ree_fs.c
https://github.com/OP-TEE/optee_os/blob/master/core/tee/fs_htree.c
https://github.com/OP-TEE/optee_os/blob/master/core/tee/tee_fs_key_manager.c
https://github.com/OP-TEE/optee_os/blob/master/lib/libutee/

OP-TEE Documentation

GlobalPlatform Trusted Storage Requirement

Below is an excerpt from the specification, listing the most vital requirements:

1. The Trusted Storage may be backed by non-secure resources as long as
suitable cryptographic protection is applied, which MUST be as strong as
the means used to protect the TEE code and data itself.

2. The Trusted Storage MUST be bound to a particular device, which means
that it MUST be accessible or modifiable only by authorized TAs
running in the same TEE and on the same device as when the data was
created.

3. Ability to hide sensitive key material from the TA itself.

4. Each TA has access to its own storage space that is shared among all the
instances of that TA but separated from the other TAs.

5. The Trusted Storage must provide a minimum level of protection against
rollback attacks. It is accepted that the actually physical storage
may be in an insecure area and so is vulnerable to actions from
outside of the TEE. Typically, an implementation may rely on the REE
for that purpose (protection level 100) or on hardware assets
controlled by the TEE (protection level 1000).

(see GP TEE Internal Core API section 2.5 and 5.2)

If configured with CFG_RPMB_FS=y the protection against rollback is controlled by the TEE and is set to 1000. If
CFG_RPMB_FS=n, there’s no protection against rollback, and the protection level is set to 0.

TEE File Structure in Linux File System

OP-TEE by default uses /data/tee/ as the secure storage space in the Linux file system. Each persistent object is
assigned an internal identifier. It is an integer which is visible in the Linux file system as /data/tee/<file number>.

A directory file, /data/tee/dirf.db, lists all the objects that are in the secure storage. All normal world files are
integrity protected and encrypted, as described below.

82 Chapter 2. Architecture

OP-TEE Documentation

2.10.3 Key Manager

Key manager is a component in TEE file system, and is responsible for handling data encryption and decryption and
also management of the sensitive key materials. There are three types of keys used by the key manager: the Secure
Storage Key (SSK), the TA Storage Key (TSK) and the File Encryption Key (FEK).

Secure Storage Key (SSK)

SSK is a per-device key and is generated and stored in secure memory when OP-TEE is booting. SSK is used to derive
the TA Storage Key (TSK).

SSK is derived by

SSK = HMACSHA256 (HUK, Chip ID || “static string”)

The functions to get Hardware Unique Key (HUK) and chip ID depends on the platform implementation. Currently,
in OP-TEE OS we only have a per-device key, SSK, which is used for secure storage subsystem, but, for the future
we might need to create different per-device keys for different subsystems using the same algorithm as we generate
the SSK; An easy way to generate different per-device keys for different subsystems is using different static strings to
generate the keys.

Trusted Application Storage Key (TSK)

The TSK is a per-Trusted Application key, which is generated from the SSK and the TA’s identifier (UUID). It is used
to protect the FEK, in other words, to encrypt/decrypt the FEK.

TSK is derived by:

TSK = HMACSHA256 (SSK, TA_UUID)

File Encryption Key (FEK)

When a new TEE file is created, key manager will generate a new FEK by PRNG (pesudo random number generator) for
the TEE file and store the encrypted FEK in meta file. FEK is used for encrypting/decrypting the TEE file information
stored in meta file or the data stored in block file.

2.10.4 Hash Tree

The hash tree is responsible for handling data encryption and decryption of a secure storage file. The hash tree is
implemented as a binary tree where each node (struct tee_fs_htree_node_image below) in the tree protects its
two child nodes and a data block. The meta data is stored in a header (struct tee_fs_htree_image below) which
also protects the top node.

All fields (header, nodes, and blocks) are duplicated with two versions, 0 and 1, to ensure atomic updates. See
core/tee/fs_htree.c for details.

2.10. Secure storage 83

https://github.com/OP-TEE/optee_os/blob/master/core/tee/fs_htree.c

OP-TEE Documentation

Meta Data Encryption Flow

Fig. 16: Meta data encryption

A new meta IV will be generated by PRNG when a meta data needs to be updated. The size of meta IV is defined
in core/include/tee/fs_htree.h, likewise are the data structures of meta data and node data are defined in fs_htree.h as
follows:

struct tee_fs_htree_node_image {
uint8_t hash[TEE_FS_HTREE_HASH_SIZE];
uint8_t iv[TEE_FS_HTREE_IV_SIZE];
uint8_t tag[TEE_FS_HTREE_TAG_SIZE];
uint16_t flags;

};

struct tee_fs_htree_meta {
uint64_t length;

};

struct tee_fs_htree_imeta {
struct tee_fs_htree_meta meta;
uint32_t max_node_id;

};

struct tee_fs_htree_image {
uint8_t iv[TEE_FS_HTREE_IV_SIZE];
uint8_t tag[TEE_FS_HTREE_TAG_SIZE];
uint8_t enc_fek[TEE_FS_HTREE_FEK_SIZE];
uint8_t imeta[sizeof(struct tee_fs_htree_imeta)];

(continues on next page)

84 Chapter 2. Architecture

https://github.com/OP-TEE/optee_os/blob/master/core/include/tee/fs_htree.h

OP-TEE Documentation

(continued from previous page)

uint32_t counter;
};

Block Data Encryption Flow

Fig. 17: Block data encryption

A new block IV will be generated by PRNG when a block data needs to be updated. The size of block IV is defined in
core/include/tee/fs_htree.h.

2.10.5 Atomic Operation

According to GlobalPlatform Trusted Storage requirement of the atomicity, the following operations should support
atomic update:

Write, Truncate, Rename, Create and Delete

The strategy used in OP-TEE secure storage to guarantee the atomicity is out-of-place update.

2.10. Secure storage 85

https://github.com/OP-TEE/optee_os/blob/master/core/include/tee/fs_htree.h

OP-TEE Documentation

2.10.6 RPMB Secure Storage

This document describes the RPMB secure storage implementation in OP-TEE, which is enabled by set-
ting CFG_RPMB_FS=y. Trusted Applications may use this implementation by passing a storage ID equal to
TEE_STORAGE_PRIVATE_RPMB, or TEE_STORAGE_PRIVATE if CFG_REE_FS is disabled. For details about RPMB,
please refer to the JEDEC eMMC specification (JESD84-B51).

The architecture is depicted below.

| NORMAL WORLD : SECURE WORLD |
:

U tee-supplicant : Trusted application
S (rpmb.c) : (secure storage API)
E ^ ^ : ^
R | | : |
~~~~~~~ ioctl ~~~~~~~|~~~~~~~~~~~~:~~~~~~~~~~~~~~~~~~|~~~~~~~~~~~~~~~~~~~~
K | | : OP-TEE
E v v : (tee_svc_storage.c)
R MMC/SD subsys. OP-TEE driver : (tee_rpmb_fs.c, tee_fs_key_manager.c)
N ^ ^ : ^
E | | : |
L v | : |

Controller driver | : |
~~~~~~~~~~~~~~~~~~~~~~~~~~~~|~~~~~~~~~~~~~~~~~~~~~~~~|~~~~~~~~~~~~~~~~~~~~

v v
Secure monitor / EL3 firmware

For information about the ioctl() interface to the MMC/SD subsystem in the Linux kernel, see the Linux core MMC
header file linux/mmc/core.h and the mmc-utils repository.

The Secure Storage API

This part is common with the REE-based filesystem. The interface between the system calls in
core/tee/tee_svc_storage.c and the RPMB filesystem is the tee_file_operations, namely struct tee_file_ops.

The RPMB filesystem

The FS implementation is entirely in core/tee/tee_rpmb_fs.c and the RPMB partition is divided in three parts:

• The first 128 bytes are reserved for partition data (struct rpmb_fs_partition).

• At offset 512 is the File Allocation Table (FAT). It is an array of struct rpmb_fat_entry elements, one per
file. The FAT grows dynamically as files are added to the filesystem. Among other things, each entry has the
start address for the file data, its size, and the filename.

• Starting from the end of the RPMB partition and extending downwards is the file data area.

Space in the partition is allocated by the general-purpose allocator functions, tee_mm_alloc(...) and
tee_mm_alloc2(...).

All file operations are atomic. This is achieved thanks to the following properties:

• Writing one single block of data to the RPMB partition is guaranteed to be atomic by the eMMC specification.

• The FAT block for the modified file is always updated last, after data have been written successfully.

86 Chapter 2. Architecture

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/include/linux/mmc/core.h
http://git.kernel.org/cgit/linux/kernel/git/cjb/mmc-utils.git
https://github.com/OP-TEE/optee_os/blob/master/core/tee/tee_svc_storage.c
https://github.com/OP-TEE/optee_os/blob/master/core/tee/tee_rpmb_fs.c

OP-TEE Documentation

• Updates to file content is done in-place only if the data do not span more than the “reliable write block count”
blocks. Otherwise, or if the file needs to be extended, a new file is created.

Device access

There is no eMMC controller driver in OP-TEE. The device operations all have to go through the normal world. They
are handled by the tee-supplicant process which further relies on the kernel’s ioctl() interface to access the
device. tee-supplicant also has an emulation mode which implements a virtual RPMB device for test purposes.

RPMB operations are the following:
• Reading device information (partition size, reliable write block count).

• Programming the security key. This key is used for authentication purposes. Note that it is different
from the Secure Storage Key (SSK) defined below, which is used for encryption. Like the SSK how-
ever, the security key is also derived from a hardware unique key or identifier. Currently, the function
tee_otp_get_hw_unique_key() is used to generate the RPMB security key.

• Reading the write counter value. The write counter is used in the HMAC computation during read
and write requests. The value is read at initialization time, and stored in struct tee_rpmb_ctx, i.e.,
rpmb_ctx->wr_cnt.

• Reading or writing blocks of data.

RPMB operations are initiated on request from the FS layer. Memory buffers for requests and responses are allo-
cated in shared memory using thread_rpc_alloc_payload(...). Buffers are passed to the normal world in a
TEE_RPC_RPMB_CMD message, thanks to the thread_rpc_cmd() function. Most RPMB requests and responses use
the data frame format defined by the JEDEC eMMC specification. HMAC authentication is implemented here also.

Security considerations

The RPMB partition in eMMC can not be accessed until a key has been programmed on the device: this is a one time
action for the lifetime of the device. Once the key has been written on the eMMC controller, the controller uses it to
authenticate requests.

The RPMB key can be programmed in a number of ways. The safest and most secure way is to program it from normal
world during production in a secure environment. MMC-tools can for instance be used to program the RPMB key.

If you want OP-TEE to program the key automatically, OP-TEE must be configured with CFG_RPMB_WRITE_KEY=y.

Warning: Be aware that this configuration will send the RPMB key in clear to the non-secure side that relays the
RPMB key programming request to the eMMC hardware device.

This configuration should only be enabled in a test or development environment.

OP-TEE can either embed a built-in RPMB key (CFG_RPMB_TESTKEY=y) or derive it from platform specific secrets
(CFG_RPMB_TESTKEY=n). The former case might be useful during development while the later is recommended for
production devices.

Deriving the key from secrets avoids OP-TEE from having to store it in memory therefore reducing the attack surface;
OP-TEE derives the RPMB key from an internal set that includes the eMMC serial number and more importantly the
Hardware Unique Key (HUK).

For this configuration to be effective, the Hardware Unique Key - a unique identifier for the particular instantiation of
the SoC - must not be publicly accessible (please notice that not all platforms might be enforcing this requirement).

2.10. Secure storage 87

https://docs.kernel.org/driver-api/mmc/mmc-tools.html
https://optee.readthedocs.io/en/latest/architecture/porting_guidelines.html#hardware-unique-key

OP-TEE Documentation

The need to keep the HUK secret is the reason why on security aware systems, the hardware will generate different
HUK values depending on the security state of the platform: said differently, the SoC will generate different HUK
depending if the BOOT ROM it is configured to boot signed images or not.

However notice that, since the RPMB key can only be written once on the controller, it follows that accessing RPMB
before securing the board will cause future RPMB accesses to be denied once the board has been secured. To prevent
this situation from happening, OP-TEE provides a software hook which platforms shall use to implement its security
logic plat_rpmb_key_is_ready().

Warning: For OP-TEE to be able to write the RPMB key, CFG_RPMB_WRITE_KEY=y must be configured and
plat_rpmb_key_is_ready() must allow it at runtime.

When programming the RPMB key from normal world the RPMB key must be made available to that tool. The RPMB
key must for security reasons normally not be known outside OP-TEE, but an exception might be made in the factory
during the manufacturing process.

If the HUK is known, the script scripts/derive_rpmb_key.py can be used to derive the RPMB key.

Pros and cons with OP-TEE automatically writing the RPMB key:
1. Automatic writing can be triggered after each boot controlled entirely by the normal world, essentially

tricking the secure world to reveal the secret RPMB key. Having a separate OP-TEE binary in the factory
is not fully secure since it is enough to restore it from from one device to achieve class breakage.

2. Automatic writing may target the wrong device if there is more than one RPMB since the device name it
determined by the probe order. The probe order may differ between boot loader and the kernel or when
rebooting. This problem can be addressed by supplying –rpmb-cid and the CID of the MMC device to use
as argument.

3. Automatic writing must be used at the moment if tee-supplicant is configured to emulate RPMB since it
starts from scratch at each boot.

Encryption

The FS encryption routines are in core/tee/tee_fs_key_manager.c. Block encryption protects file data. The algorithm
is 128-bit AES in Cipher Block Chaining (CBC) mode with Encrypted Salt-Sector Initialization Vector (ESSIV), see
CBC-ESSIV for details.

• During OP-TEE initialization, a 128-bit AES Secure Storage Key (SSK) is derived from a Hardware
Unique Key (HUK). It is kept in secure memory and never written to disk. A Trusted Application
Storage Key is derived from the SSK and the TA UUID.

• For each file, a 128-bit encrypted File Encryption Key (FEK) is randomly generated when the file is
created, encrypted with the TSK and stored in the FAT entry for the file.

• Each 256-byte block of data is then encrypted in CBC mode. The initialization vector is obtained by
the ESSIV algorithm, that is, by encrypting the block number with a hash of the FEK. This allows
direct access to any block in the file, as follows:

FEK = AES-Decrypt(TSK, encrypted FEK);
k = SHA256(FEK);
IV = AES-Encrypt(128 bits of k, block index padded to 16 bytes)
Encrypted block = AES-CBC-Encrypt(FEK, IV, block data);
Decrypted block = AES-CBC-Decrypt(FEK, IV, encrypted block data);

SSK, TSK and FEK handling is common with the REE-based secure storage, while the AES CBC block encryption is
used only for RPMB (the REE implementation uses GCM). The FAT is not encrypted.

88 Chapter 2. Architecture

https://github.com/OP-TEE/optee_os/blob/master/scripts/derive_rpmb_key.py
https://github.com/OP-TEE/optee_os/blob/master/core/tee/tee_fs_key_manager.c
https://en.wikipedia.org/wiki/Disk_encryption_theory#Cipher-block_chaining_(CBC)

OP-TEE Documentation

REE FS hash state

If configured with both CFG_REE_FS=y and CFG_RPMB_FS=y the REE FS will create a special file, dirfile.db.hash
in RPMB which hold a hash representing the state of REE FS.

2.10.7 Important caveats

Warning: Currently some OP-TEE platform are not able to support retrieval of the Hardware Unique Key or Chip
ID required for secure operation. For those platforms, a constant key is used, resulting in no protection against
decryption, or Secure Storage duplication to other devices. This is because information about how to retrieve key
data from the SoC is considered sensitive by some vendors and it is not publicly available.

To allow Secure Storage to operate securely on your platform, you must define implementations in your platform code
for:

void tee_otp_get_hw_unique_key(struct tee_hw_unique_key *hwkey);

int tee_otp_get_die_id(uint8_t *buffer, size_t len);

These implementations should fetch the key data from your SoC-specific e-fuses, or crypto unit according to the method
defined by your SoC vendor.

2.10.8 References

For more information about secure storage, please see SFO15-503, LAS16-504, SFO17-309 at Presentations and the
TEE Internal Core API specification.

2.11 Subkeys

Subkeys is an OP-TEE-specific implementation to provide a public key hierarchy. Subkeys can be delegated to allow
different actors to sign different TAs without sharing a private key.

The first key in the chain is verified using a root key. Example Subkey hierarchy:

Each subkey defines a UUIDv5 namespace1 to which another signed subkey or TA must belong. This avoids that one
subkey can be used to sign TAs which should be signed with a different key. Since the UUIDs are restricted by this
there is also a special kind of subkey, called identity subkey, which uses the same UUID as the TA it is supposed to
sign.

1 UUIDv5 and namespaces are described in RFC4122. Note that OP-TEE uses a truncated SHA-512 instead of the weak SHA-1 hash when when
deriving a new UUID from a namespace and name.

2.11. Subkeys 89

https://datatracker.ietf.org/doc/html/rfc4122

OP-TEE Documentation

A subkey consists of two files, a private key pair in a .pem file and the signed public key in a .bin file. Subkeys reuse
the signed header (SHDR) format used for signed TAs, followed by a payload holding a public key and UUID among
other fields. A subkey is formatted with all fields in little endian as:

Size in bytes Field Name Protected by field
Signed header (struct shdr)
4 magic hash 0x4f545348
4 img_type hash 3, SHDR_SUBKEY
4 img_size hash
4 algo hash Signature algorithm, GP

TEE_ALG_*
4 hash_size hash
4 sig_size hash
hash_size hash sig
sig_size sig previous pub key Root key or a subkey

higher up in the chain
Subkey header (struct shdr_subkey)
16 UUID hash UUIDv5 namespace for

next subkey or TA
4 name_size hash Size of the UUIDv5 name

for the next subkey or TA,
0 for identiy subkeys

4 subkey_version hash
4 max_depth hash
4 algo hash Signature algorithm for

the next subkey or TA
4 attr_count hash

Subkey attrs * attr_count Attributes of the public
key in this subkey

4 id hash GP TEE_ATTR_*
4 offs hash
4 size hash
opaque data padding up this binary to img_size hash The subkey attributes

above point into this area
using offset and size

All subkeys included in the subkey hierarchy are added in front when a TA is signed using a subkey. For example, if a
TA is signed using the second-level subkey above it would look like this:

Size in
bytes

Binary

first.img_sizeFirst-level subkey | Signed by Root key
first.name_sizeUUIDv5 name

string for the next
subkey

Not signed, used to prove that the next UUID is in the namespace of the First-
level subkey. This size is from “name_size” of the previous subkey (First-level).

sec-
ond.img_size

Second-level sub-
key

Signed by First-level subkey

sec-
ond.name_size

UUIDv5 name
string for the TA

Not signed used to prove that the next UUID is in the namespace of the Second-
level subkey. This size is from “name_size” of the previous subkey (Second-
level).

sec-
ond.img_size

TA Signed by Second-level subkey

90 Chapter 2. Architecture

OP-TEE Documentation

The signed TA binary is self-contained with all the public keys needed for verification included, except the public root
key which is embedded in the TEE core binary.

The UUIDv5 name string is a separate field between subkeys and the next subkey or TA to allow a subkey to be used
to sign more than one other subkey or TA.

A signed TA or subkey can be inspected using the sign_encrypt.py script, for example:

$ scripts/sign_encrypt.py display --in 5c206987-16a3-59cc-ab0f-64b9cfc9e758.ta
Subkey
struct shdr
magic: 0x4f545348
img_type: 3 (SHDR_SUBKEY)
img_size: 320 bytes
algo: 0x70414930 (TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA256)
hash_size: 32 bytes
sig_size: 256 bytes
hash: f573f329fe77be686ce71647909c4ea35b5e1cd7de86369bd7d9fca31f6a4d65

struct shdr_subkey
uuid: f04fa996-148a-453c-b037-1dcfbad120a6
name_size: 64
subkey_version: 1
max_depth: 4
algo: 0x70414930 (TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA256)
attr_count: 2
next name: "mid_level_subkey"

Next header at offset: 692 (0x2b4)
Subkey
struct shdr
magic: 0x4f545348
img_type: 3 (SHDR_SUBKEY)
img_size: 320 bytes
algo: 0x70414930 (TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA256)
hash_size: 32 bytes
sig_size: 256 bytes
hash: 233a6dcf1a2cf69e50cde8e20c4129157da707c76fa86ce12ee31037edef02d7

struct shdr_subkey
uuid: 1a5948c5-1aa0-518c-86f4-be6f6a057b16
name_size: 64
subkey_version: 1
max_depth: 3
algo: 0x70414930 (TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA256)
attr_count: 2
next name: "subkey1_ta"

Next header at offset: 1384 (0x568)
Bootstrap TA
struct shdr
magic: 0x4f545348
img_type: 1 (SHDR_BOOTSTRAP_TA)
img_size: 84576 bytes
algo: 0x70414930 (TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA256)
hash_size: 32 bytes
sig_size: 256 bytes
hash: ea31ac7dc2cc06a9dc2853cd791dd00f784b5edc062ecfa274deeb66589b4ca5

(continues on next page)

2.11. Subkeys 91

OP-TEE Documentation

(continued from previous page)

struct shdr_bootstrap_ta
uuid: 5c206987-16a3-59cc-ab0f-64b9cfc9e758
ta_version: 0

TA offset: 1712 (0x6b0) bytes
TA size: 84576 (0x14a60) bytes

2.12 Trusted Applications

There are two ways to implement Trusted Applications (TAs), Pseudo TAs and user mode TAs. User mode TAs are full
featured Trusted Applications as specified by the GlobalPlatform API TEE specifications, these are simply the ones
people are referring to when they are saying “Trusted Applications” and in most cases this is the preferred type of TA
to write and use.

2.12.1 Pseudo Trusted Applications

A Pseudo Trusted Application is not a Trusted Application. A Pseudo TA is not a specific entity. A Pseudo TA is an
interface. It is an interface exposed by the OP-TEE Core to its outer world: to secure client Trusted Applications and
to non-secure client entities.

These are implemented directly to the OP-TEE core tree in, e.g., core/pta and are built along with and statically built
into the OP-TEE core blob.

The Pseudo Trusted Applications included in OP-TEE already are OP-TEE secure privileged level services hidden
behind a “GlobalPlatform TA Client” API. These Pseudo TAs are used for various purposes such as specific secure
services or embedded tests services.

Pseudo TAs do not benefit from the GlobalPlatform Core Internal API support specified by the GlobalPlatform TEE
specs. These APIs are provided to TAs as a static library each TA shall link against (the “libutee”) and that calls
OP-TEE core service through system calls. As OP-TEE core does not link with libutee, Pseudo TAs can only use the
OP-TEE core internal APIs and routines.

As Pseudo TAs runs at the same privileged execution level as the OP-TEE core code itself and that might or might not
be desirable depending on the use case.

In most cases an unprivileged (user mode) TA is the best choice instead of adding your code directly to the OP-TEE
core. However if you decide your application is best handled directly in OP-TEE core like this, you can look at core/
pta/stats.c as a template and just add your Pseudo TA based on that to the sub.mk in the same directory.

2.12.2 User Mode Trusted Applications

User Mode Trusted Applications are loaded (mapped into memory) by OP-TEE core in the Secure World when some-
thing in Rich Execution Environment (REE) wants to talk to that particular application UUID. They run at a lower
CPU privilege level than OP-TEE core code. In that respect, they are quite similar to regular applications running in
the REE, except that they execute in Secure World.

Trusted Application benefit from the GlobalPlatform TEE Internal Core API as specified by the GlobalPlatform TEE
specifications. There are several types of user mode TAs, which differ by the way they are stored.

92 Chapter 2. Architecture

OP-TEE Documentation

2.12.3 TA locations

Plain TAs (user mode) can reside and be loaded from various places. There are three ways currently supported in
OP-TEE.

Early TA

The so-called early TAs are virtually identical to the REE FS TAs, but instead of being loaded from the Normal World
file system, they are linked into a special data section in the TEE core blob. Therefore, they are available even before
tee-supplicant and the REE’s filesystems have come up. Please find more details in the early TA commit.

REE filesystem TA

They consist of a ELF file, signed and optionally encrypted, named from the UUID of the TA and the suffix .ta. They
are built separately from the OP-TEE core boot-time blob, although when they are built they use the same build system,
and are signed with the key from the build of the original OP-TEE core blob.

Because the TAs are signed and optionally encrypted with scripts/sign_encrypt.py, they are able to be stored in
the untrusted REE filesystem, and tee-supplicant will take care of passing them to be checked and loaded by the
Secure World OP-TEE core.

REE-FS TA rollback protection

OP-TEE core maintains a ta_ver.db file in secure storage to check for version of REE TAs as they are loaded from
REE-FS in order to prevent against any TA version downgrades. TA version can be configured via TA build option:
CFG_TA_VERSION=<unsigned integer>.

Note: Here rollback protection is effective only when CFG_RPMB_FS=y.

REE-FS TA formats

REE filesystem TAs come in three formats:

1. Legacy TAs signed, not encrypted, cannot be created anymore by the build scripts since version 3.7.0.

2. Bootstrap TAs, signed with the key from the build of the original OP-TEE core blob, not encrypted.

3. Encrypted TAs, sign-then-encrypt-then-MAC, encrypted with TA_ENC_KEY when
CFG_ENCRYPT_TA=y. During OP-TEE runtime, the symmetric key used to decrypt TA has to
be provided in a platform specific manner via overriding API:

TEE_Result tee_otp_get_ta_enc_key(uint32_t key_type, uint8_t *buffer,
size_t len);

2.12. Trusted Applications 93

https://github.com/OP-TEE/optee_os/commit/d0c636148b3a
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

OP-TEE Documentation

REE-FS TA header structure

All REE filesystems TAs has common header, struct shdr, defined as:

enum shdr_img_type {
SHDR_TA = 0,
SHDR_BOOTSTRAP_TA = 1,
SHDR_ENCRYPTED_TA = 2,

};

#define SHDR_MAGIC 0x4f545348

/**
* struct shdr - signed header
* @magic: magic number must match SHDR_MAGIC
* @img_type: image type, values defined by enum shdr_img_type
* @img_size: image size in bytes
* @algo: algorithm, defined by public key algorithms TEE_ALG_*
* from TEE Internal API specification
* @hash_size: size of the signed hash
* @sig_size: size of the signature
* @hash: hash of an image
* @sig: signature of @hash
*/
struct shdr {

uint32_t magic;
uint32_t img_type;
uint32_t img_size;
uint32_t algo;
uint16_t hash_size;
uint16_t sig_size;
/*
* Commented out element used to visualize the layout dynamic part
* of the struct.
*
* hash is accessed through the macro SHDR_GET_HASH and
* signature is accessed through the macro SHDR_GET_SIG
*
* uint8_t hash[hash_size];
* uint8_t sig[sig_size];
*/

};

#define SHDR_GET_SIZE(x) (sizeof(struct shdr) + (x)->hash_size + \
(x)->sig_size)

#define SHDR_GET_HASH(x) (uint8_t *)(((struct shdr *)(x)) + 1)
#define SHDR_GET_SIG(x) (SHDR_GET_HASH(x) + (x)->hash_size)

The field img_type tells the type of TA, if it’s SHDR_TA (0), it’s a legacy TA. If it’s SHDR_BOOTSTRAP_TA (1) it’s a
bootstrap TA.

The field algo tells the algorithm used. The script used to sign TAs currently uses
TEE_ALG_RSASSA_PKCS1_V1_5_SHA256 (0x70004830). This means RSA with PKCS#1v1.5 padding and SHA-256
hash function. OP-TEE accepts any of the TEE_ALG_RSASSA_PKCS1_* algorithms.

94 Chapter 2. Architecture

OP-TEE Documentation

For bootstrap TAs struct shdr is followed by a subheader, struct shdr_bootstrap_ta which is defined as:

/**
* struct shdr_bootstrap_ta - bootstrap TA subheader
* @uuid: UUID of the TA
* @ta_version: Version of the TA
*/
struct shdr_bootstrap_ta {

uint8_t uuid[sizeof(TEE_UUID)];
uint32_t ta_version;

};

The fields uuid and ta_version allows extra checks to be performed when loading the TA. Currently only the uuid
field is checked.

For encrypted TAs struct shdr is followed by a subheader, struct shdr_bootstrap_ta which is followed by
another subheader, struct shdr_encrypted_ta defined as:

/**
* struct shdr_encrypted_ta - encrypted TA header
* @enc_algo: authenticated encyption algorithm, defined by symmetric key
* algorithms TEE_ALG_* from TEE Internal API
* specification
* @flags: authenticated encyption flags
* @iv_size: size of the initialization vector
* @tag_size: size of the authentication tag
* @iv: initialization vector
* @tag: authentication tag
*/
struct shdr_encrypted_ta {

uint32_t enc_algo;
uint32_t flags;
uint16_t iv_size;
uint16_t tag_size;
/*
* Commented out element used to visualize the layout dynamic part
* of the struct.
*
* iv is accessed through the macro SHDR_ENC_GET_IV and
* tag is accessed through the macro SHDR_ENC_GET_TAG
*
* uint8_t iv[iv_size];
* uint8_t tag[tag_size];
*/

};

The field enc_algo tells the algorithm used. The script used to encrypt TAs currently uses TEE_ALG_AES_GCM
(0x40000810). OP-TEE core also accepts TEE_ALG_AES_CCM algorithm.

The field flags supports a single flag to tell encryption key type which is defined as:

#define SHDR_ENC_KEY_TYPE_MASK 0x1

enum shdr_enc_key_type {
SHDR_ENC_KEY_DEV_SPECIFIC = 0,

(continues on next page)

2.12. Trusted Applications 95

OP-TEE Documentation

(continued from previous page)

SHDR_ENC_KEY_CLASS_WIDE = 1,
};

REE-FS TA binary formats

TA binary follows the ELF file which normally is stripped as additional symbols etc will be ignored when loading the
TA.

Legacy TA binary is formatted as:

hash = H(<struct shdr> || <stripped ELF>)
signature = RSA-Sign(hash)
legacy_binary = <struct shdr> || <hash> || <signature> || <stripped ELF>

Bootstrap TA binary is formatted as:

hash = H(<struct shdr> || <struct shdr_bootstrap_ta> || <stripped ELF>)
signature = RSA-Sign(<hash>)
bootstrap_binary = <struct shdr> || <hash> || <signature> ||

<struct shdr_bootstrap_ta> || <stripped ELF>

Encrypted TA binary is formatted as:

nonce = <unique random value>
ciphertext, tag = AES_GCM(<stripped ELF>)
hash = H(<struct shdr> || <struct shdr_bootstrap_ta> ||

<struct shdr_encrypted_ta> || <nonce> || <tag> || <stripped ELF>)
signature = RSA-Sign(<hash>)
encrypted_binary = <struct shdr> || <hash> || <signature> ||

<struct shdr_bootstrap_ta> ||
<struct shdr_encrypted_ta> || <nonce> || <tag> ||
<ciphertext>

Verifying with Subkeys

A TA can be verified using a subkey or a chain of subkeys. This allows delegation of TA signing without distributing
the root key. TAs signed with a subkey are confined to the UUID-V5 namespace of the subkey to avoid TA UUID
clashes with different subkeys.

SHDR_SUBKEY is a type of header which enables chains of public keys. The public root key is used to verify the first
public subkey, which then is used to verify the next public subkey and so on.

The TA is finally verified using the last subkey. All these headers are added in front of the TA binary so everything
needed to verify the TA is available when it’s loaded into memory.

For details on subkeys see also Subkeys

96 Chapter 2. Architecture

OP-TEE Documentation

Loading REE-FS TA

A REE TA is loaded into shared memory using a series or RPC in Loading a REE TA into nonsecure shared memory.
The payload memory is allocated via TEE-supplicant and later freed when the TA has been loaded into secure memory
in Freeing previously allocated nonsecure shared memory.

Fig. 18: Loading a REE TA into nonsecure shared memory

Fig. 19: Freeing previously allocated nonsecure shared memory

2.12. Trusted Applications 97

OP-TEE Documentation

Secure Storage TA

These are stored in secure storage. The meta data is stored in a database of all installed TAs and the actual binary is
stored encrypted and integrity protected as a separate file in the untrusted REE filesystem (flash). Before these TAs can
be loaded they have to be installed first, this is something that can be done during initial deployment or at a later stage.

For test purposes the test program xtest can install a TA into secure storage with the command:

$ xtest --install-ta

TAs stored in secure storage are kept in a TA database. The TA database consists of a single file with the name dirf.
db which is stored either in the REE filesystem based secure storage or in RPMB. The file is encrypted and integrity
protected as any other object in secure storage. The TAs themselves are not stored in dirf.db, they are instead stored
in the REE filesystem encrypted and integrity protected. One reason for this is that TAs can potentially be quite large,
several megabytes, while secure storage is designed to hold only small objects counted in kilobytes.

dirf.db constsist of an array of struct tadb_entry, defined as:

/*
* struct tee_tadb_property
* @uuid: UUID of Trusted Application (TA) or Security Domain (SD)
* @version: Version of TA or SD
* @custom_size:Size of customized properties, prepended to the encrypted
* TA binary
* @bin_size: Size of the binary TA
*/
struct tee_tadb_property {

TEE_UUID uuid;
uint32_t version;
uint32_t custom_size;
uint32_t bin_size;

};

#define TADB_IV_SIZE TEE_AES_BLOCK_SIZE
#define TADB_TAG_SIZE TEE_AES_BLOCK_SIZE
#define TADB_KEY_SIZE TEE_AES_MAX_KEY_SIZE

/*
* struct tadb_entry - TA database entry
* @prop: properties of TA
* @file_number: encrypted TA is stored in <file_number>.ta
* @iv: Initialization vector of the authentication crypto
* @tag: Tag used to validate the authentication encrypted TA
* @key: Key used to decrypt the TA
*/
struct tadb_entry {

struct tee_tadb_property prop;
uint32_t file_number;
uint8_t iv[TADB_IV_SIZE];
uint8_t tag[TADB_TAG_SIZE];
uint8_t key[TADB_KEY_SIZE];

};

Entries where the UUID consists of zeros only are not valid and are ignored. The file_number field represents
that name of the file stored in the REE filesystem. The filename is made from the decimal string representation of

98 Chapter 2. Architecture

OP-TEE Documentation

file_number with .ta appended, or if it was to be printed: printf("%u.ta", file_number).

The TA is decrypted using the authentication encryption algorithm AES-GCM initialized with the iv and key fields,
the tag field is used when finalizing the decryption

A TA is looked up in the TA database by opening dirf.db and scanning through the elements which are of type
struct tadb_entry until a matching UUID is found.

2.12.4 Loading and preparing TA for execution

User mode TAs are loaded into final memory in the same way using the user mode ELF loader ldelf. The different
TA locations has a common interface towards ldelf which makes the user mode operations identical regarless of how
the TA is stored.

The TA is loaded into secure memory in Preparing TA for execution.

Fig. 20: Preparing TA for execution

After ldelf has returned with a TA prepared for execution it still remains in memory to serve the TA if dlopen() and
friends are used. ldelf is also used to dump stack trace and detailed memory mappings if a TA is terminated via an
abort.

A high level view of the entire flow from the client application in Linux user space where a session is opened to a TA
is given in Open session to a TA.

2.12. Trusted Applications 99

OP-TEE Documentation

Fig. 21: Open session to a TA

2.12.5 TA Properties

This section give a more in depth description of the TA properties (see Trusted Applications also).

GlobalPlatform Properties

Standard TA properties must be defined through property flag in macro TA_FLAGS in user_ta_header_defines.h

Single Instance

"gpd.ta.singleInstance" is a boolean property of the TA. This property defines if one instance of the TA must be
created and will receive all open session request, or if a new specific TA instance must be created for each incoming open
session request. OP-TEE TA flag TA_FLAG_SINGLE_INSTANCE sets to configuration of this property. The boolean
property is set to true if TA_FLAGS sets bit TA_FLAG_SINGLE_INSTANCE, otherwise the boolean property is set to
false.

Multi-session

"gpd.ta.multiSession" is a boolean property of the TA. This property defines if the TA instance can handle several
sessions. If disabled, TA instance support only one session. In such case, if the TA already has a opened session, any
open session request will return with a busy error status.

Note: This property is meaningless if TA is NOT SingleInstance TA.

100 Chapter 2. Architecture

OP-TEE Documentation

OP-TEE TA flag TA_FLAG_MULTI_SESSION sets to configuration of this property. The boolean property is set to true
if TA_FLAGS sets bit TA_FLAG_MULTI_SESSION, otherwise the boolean property is set to false.

Keep Alive

"gpd.ta.instanceKeepAlive" is a boolean property of the TA. This property defines if the TA instance created
must be destroyed or not when all sessions opened towards the TA are closed. If the property is enabled, TA instance,
once created (at 1st open session request), is never removed unless the TEE itself is restarted (boot/reboot).

Note: This property is meaningless if TA is NOT SingleInstance TA.

OP-TEE TA flag TA_FLAG_INSTANCE_KEEP_ALIVE sets to configuration of this property. The boolean property is set
to true if TA_FLAGS sets bit TA_FLAG_INSTANCE_KEEP_ALIVE, otherwise the boolean property is set to false.

Heap Size

"gpd.ta.dataSize" is a 32bit integer property of the TA. This property defines the size in bytes of the TA allocation
pool, in which TEE_Malloc() and friends allocate memory. The value of the property must be defined by the macro
TA_DATA_SIZE in user_ta_header_defines.h (see TA Properties).

Stack Size

"gpd.ta.stackSize" is a 32bit integer property of the TA. This property defines the size in bytes of the
stack used for TA execution. The value of the property must be defined by the macro TA_STACK_SIZE in
user_ta_header_defines.h (see TA Properties).

Property Extensions

Secure Data Path Flag

TA_FLAG_SECURE_DATA_PATH is a bit flag supported by TA_FLAGS. This property flag claims the secure data sup-
port from the OP-TEE OS for the TA. Refer to the OP-TEE OS for secure data path support. TAs that do not set
TA_FLAG_SECURE_DATA_PATH in the value of TA_FLAGS will not be able to handle memory reference invocation
parameters that relate to secure data path buffers.

Cache maintenance Flag

TA_FLAG_CACHE_MAINTENANCE is a bit flag supported by TA_FLAGS. This property flag, when enabled, allows Trusted
Applciation to use the cache maintenance API extension of the Internal Core API described in Cache Maintenance
Support. TAs that do not set TA_FLAG_CACHE_MAINTENANCE in the value of their TA_FLAGS will not be able to call
the cache maintenance API.

2.12. Trusted Applications 101

OP-TEE Documentation

Deprecated Property Flags

Older versions of OP-TEE used to define extended property flags that are deprecated and meaningless to current OP-
TEE. These are TA_FLAG_USER_MODE, TA_FLAG_EXEC_DDR and TA_FLAG_REMAP_SUPPORT.

2.13 Virtualization

OP-TEE have experimental virtualization support. This is when one OP-TEE instance can run TAs from multiple
virtual machines. OP-TEE isolates all VM-related states, so one VM can’t affect another in any way.

With virtualization support enabled, OP-TEE will rely on a hypervisor, because only the hypervisor knows which
VM is calling OP-TEE. Also, naturally the hypervisor should inform OP-TEE about creation and destruction of VMs.
Besides, in almost all cases, hypervisor enables two-stage MMU translation, so VMs does not see real physical address
of memory, instead they work with intermediate physical addresses (IPAs). On other hand OP-TEE can’t translate IPA
to PA, so this is a hypervisor’s responsibility to do this kind of translation. So, hypervisor should include a component
that knows about OP-TEE protocol internals and can do this translation. We call this component “TEE mediator” and
right now only XEN hypervisor have OP-TEE mediator.

2.13.1 Configuration

Virtualization support is enabled with CFG_VIRTUALIZATION configuration option. When this option is en-
abled, OP-TEE will not work without compatible a hypervisor. This is because the hypervisor should send
OPTEE_SMC_VM_CREATED SMC with VM ID before any standard SMC can be received from client.

CFG_VIRT_GUEST_COUNT controls the maximum number of supported VMs. As OP-TEE have limited size of available
memory, increasing this count will decrease amount of memory available to one VM. Because we want VMs to be
independent, OP-TEE splits available memory in equal portions to every VM, so one VM can’t consume all memory
and cause DoS to other VMs.

2.13.2 Requirements for hypervisor

As said earlier, hypervisor should be aware of OP-TEE and SMCs from virtual guests to OP-TEE. This is a list of
things, that compatible hypervisor should perform:

1. When new OP-TEE-capable VM is created, hypervisor should inform OP-TEE about it with SMC
OPTEE_SMC_VM_CREATED. a1 parameter should contain VM id. ID 0 is defined as HYP_CLNT_ID and is re-
served for hypervisor itself.

2. When OP-TEE-capable VM is being destroyed, hypervisor should stop all VCPUs (this will ensure that OP-TEE
have no active threads for that VMs) and send SMC OPTEE_SMC_VM_DESTROYED with the same parameters as
for OPTEE_SMC_VM_CREATED.

3. Any SMC to OP-TEE should have VM ID in a7 parameter. This is either HYP_CLNT_ID if call originates from
hypervisor or VM ID that was passed in OPTEE_SMC_VM_CREATED call.

4. Hypervisor should perform IPA<->PA address translation for all SMCs. This includes both arguments in a1-a6
registers and in in-memory command buffers.

5. Hypervisor should pin memory pages that VM shares with OP-TEE. This means, that hypervisor should ensure
that pinned page will reside at the original PA as long, as it is shared with OP-TEE. Also it should still belong to
the VM that shared it. For example, the hypervisor should not swap out this page, transfer ownership to another
VM, unmap it from VM address space and so on.

102 Chapter 2. Architecture

OP-TEE Documentation

6. Naturally, the hypervisor should correctly handle the OP-TEE protocol, so for any VM it should look like it is
working with OP-TEE directly.

2.13.3 Limitations

Virtualization support is in experimental state and it have some limitations, user should be aware of.

Platforms support

Only Armv8 architecture is supported. There is no hard restriction, but currently Armv7-specific code (like MMU or
thread manipulation) just know nothing about virtualization. Only one platform has been tested right now and that is
QEMU-V8 (aka qemu that emulates Arm Versatile Express with Armv8 architecture). Support for Rcar Gen3 should
be added soon.

Static VMs guest count and memory allocation

Currently, a user should configure maximum number of guests. OP-TEE will split memory into equal chunks,
so every VM will have the same amount of memory. For example, if you have 6MB for your TAs, you can set
CFG_VIRT_GUEST_COUNT to 3 and every VM would be able to use 2MB maximum, even if there is no other VMs
running. This is okay for embedded setups when you know exact number and roles of VMs, but can be inconvenient
for server applications. Also, it is impossible to configure amount of memory available for a given VM. Every VM
instance will have exactly the same amount of memory.

Sharing hardware resources and PTAs

Right now only HW that can be used by multiple VMs simultaneously is serial console, used for logging. Devices like
HW crypto accelerators, secure storage devices (e.g. external flash storage, accessed directly from OP-TEE) and others
are not supported right now. Drivers should be made virtualization-aware before they can be used with virtualization
extensions.

Every VM will have own PTA states, which is a good thing in most cases. But if one wants PTA to have some global
state that is shared between VMs, he need to write PTA accordingly.

No compatibility with “normal” mode

OP-TEE built with CFG_VIRTUALIZATION=y will not work without a hypervisor, because before executing any stan-
dard SMC, OPTEE_SMC_VM_CREATED must be called. This can be inconvenient if one wants to switch between vir-
tualized and non-virtualized environment frequently. On other hand, it is not a big deal in a production environment.
Simple workaround can be made for this: if OP-TEE receives standard SMC prior to OPTEE_SMC_VM_CREATED, it
implicitly creates VM context and uses it for all subsequent calls.

2.13. Virtualization 103

OP-TEE Documentation

Implementation details

OP-TEE as a whole can be split into two entities. Let us call them “nexus” and TEE. Nexus is a core part of OP-TEE
that takes care of low level things: SMC handling, memory management, threads creation and so on. TEE is a part that
does the actual job: handles requests, loads TAs, executes them, and so on. So, it is natural to have one nexus instance
and multiple instances of TEE, one TEE instance per registered VM. This can be done either explicitly or implicitly.

Explicit way is to move TEE state in some sort of structure and make all code to access fields of this structure. Something
like struct task_struct and current in linux kernel. Then it is easy to allocate such structure for every VM
instance. But this approach basically requires to rewrite all OP-TEE code.

Implicit way is to have banked memory sections for TEE/VM instances. So memory layout can look something like
that:

+---+
| Nexus: .nex_bss, .nex_data, ... |
+---+
| TEE states |
| |
| VM1 TEE state | VM 2 TEE state | VM 3 TEE state |
| .bss, .data | .bss, .data | .bss, .data, |
+---+

This approach requires no changes in TEE code and requires some changes into nexus code. So, idea that Nexus state
resides in separate sections (.nex_data, .nex_bss, .nex_nozi, .nex_heap and others) and is always mapped.

TEE state resides in standard sections (like .data, .bss, .heap and so on). There is a separate set of this sections for
every VM registered and Nexus maps them only when it receives call from corresponding VM.

As Nexus and TEE have separate heaps, bget allocator was extended to work with multiple “contexts”. malloc(),
free()with friends work with one context. nex_malloc() (and other nex_ functions) were added. They use different
context, so now Nexus can use separate heap, which is always mapped into OP-TEE address space. When virtualization
support is disabled, all those nex_ functions are defined to point to standard malloc() counterparts.

To change memory mappings in run-time, in MMU code we have added a new entity, named “partition”, which is
defined by struct mmu_partition. It holds information about all page-tables, so the whole MMU mapping can be
switched by one write to TTBR register.

There is the default partition, it holds MMU state when there is no VM context active, so no TEE state is mapped.
When OP-TEE receives OPTEE_SMC_VM_CREATED call, it copies default partition into new one and then maps sections
with TEE data. This is done by prepare_memory_map() function in virtualization.c.

When OP-TEE receives STD call it checks that the supplied VM ID is valid and then activates corresponding MMU
partition, so TEE code can access its own data. This is basically how virtualization support is working.

2.14 SPMC

This document describes the SPMC (S-EL1) implementation for OP-TEE. More information on the SPMC can be
found in the FF-A specification can be found in the FF-A spec.

104 Chapter 2. Architecture

https://developer.arm.com/documentation/den0077/latest

OP-TEE Documentation

2.14.1 SPMC Responsibilities

The SPMC is a critical component in the FF-A flow. Some of its major responsibilities are:

• Initialisation and run-time management of the SPs:
The SPMC component is responsible for initialisation of the Secure Partitions (loading the image, setting
up the stack, heap, . . .).

• Routing messages between endpoints:
The SPMC is responsible for passing FF-A messages from normal world to SPs and back. It also responsible
for passing FF-A messages between SPs.

• Memory management:
The SPMC is responsible for the memory management of the SPs. Memory can be shared between SPs
and between a SP to the normal world.

This document describes OP-TEE as a S-EL1 SPMC.

2.14.2 Secure Partitions

Secure Partitions (SPs) are the endpoints used in the FF-A protocol. When OP-TEE is used as a SPMC SPs run
primarily inside S-EL0.

OP-TEE will use FF-A for it transport layer when the OP-TEE CFG_CORE_FFA=y configuration flag is enabled. The
SPMC will expose the OP-TEE core, privileged mode, as an secure endpoint itself. This is used to handle all Glob-
alPlaform programming mode operations. All GlobalPlatform messages are encapsulated inside FF-A messages. The
OP-TEE endpoint will unpack the messages and afterwards handle them as standard OP-TEE calls. This is needed as
TF-A (S-EL3) does only allow FF-A messages to be passed to the secure world when the SPMD is enabled.

SPs run from the initial boot of the system until power down and don’t have any built-in session management compared
to GPD TEE TAs. The only means of communicating with the outside world is through messages defined in the FF-A
specification. The context of a SP is saved between executions.

The Trusted Service repository includes the libsp libary which export all needed functions to build a S-EL0 SP. It also
includes many examples of how to create and implement a SP.

2.14.3 Secure Partition formats

OP-TEE specific ELF format

OP-TEE uses an ELF format for its Trusted Applications. It has an OP-TEE specific section which contains a header
structure for describing the Trusted Application. A very similar format can be used for Secure Partitions. The same
ELF format allows OP-TEE to use the built-in ELF loader (ldelf) with all its features like handling relocations or
ASLR. In this case a different section is used for the header structure to distinguish between Trusted Applications and
Secure Partitions.

2.14. SPMC 105

https://www.trustedfirmware.org/projects/trusted-services/

OP-TEE Documentation

SPMC agnostic flat binary format

This simple binary format aims for maximum portability between SPMC implementations by removing the dependency
on an ELF loader and implementation specific metadata in the SP image. The SPMC can simply copy the binary into
the memory and start running it. The relocations, the stack setup and any further initialization steps should be handled
by the startup code of the secure partition. The access rights for different sections of the binary can be configured either
by adding load relative memory regions to the SP manifest or by using the FFA_MEM_PERM_SET interface in the startup
code.

2.14.4 SPMC Program Flow

SP images are either embedded into the OP-TEE image or loaded from the FIP by BL2. This makes it possible to start
SPs during boot, before the rich OS is available in the normal world.

Starting SPs

SPs are loaded and started as the last step in OP-TEE’s initialisation process. This is done by adding sp_init_all()
to the boot_final initcall level.

sp_init_all()
Initialise all SPs which have been added by the SP_PATHS compiler option and run them

thread_ffa_msg_wait()
All SPs are loaded and started. A FFA_MSG_WAIT message is sent to the Normal World.

106 Chapter 2. Architecture

OP-TEE Documentation

Each ELF format SP is loaded into the system using ldelf and started. This is based around the same process as
loading the early TAs. For each binary format SP a simpler method is used to copy the binary into a suitable memory
area. All SPs are run after they are loaded and run until a FFA_MSG_WAIT is sent by the SP.

2.14. SPMC 107

OP-TEE Documentation

init_with_ldelf()

108 Chapter 2. Architecture

OP-TEE Documentation

Load the OP-TEE specific ELF format SP

load_binary_sp()
Load the SPMC agnostic flat binary format SP

sp_init_info()
Initialise the struct ffa_init_info. The struct ffa_init_info is passed to the SP during it
first run.

sp_init_set_registers()
Initialise the registers of the SP

sp_msg_handler()
Handle the SPs FF-A message

Once all SPs are loaded and started we return to the SPMD and the Normal World is booted.

SP message handling

The SPMC is split into 2 main message handlers:

thread_spmc_msg_recv() thread_spmc.c
Used to handle message coming from the Normal World.

sp_msg_handler() spmc_sp_handler.c
Used to handle message where the source or the destination is a SP.

When a FFA_MSG_SEND_DIRECT_REQ message is received by the SPMC from the Normal World, a new thread is
started. The FF-A message is passed to the thread and it will call the sp_msg_handler() function.

Whenever the SPMC (sp_msg_handler()) receives a message not intended for one of the SPs, it will exit the thread
and return to the Normal World passing the FF-A message.

Currently only a FFA_MSG_SEND_DIRECT_REQ can be passed from the Normal World to a SP.

2.14. SPMC 109

OP-TEE Documentation

Every message received by the SPMC from the Normal World is handled in the thread_spmc_msg_recv() function.

When entering a SP we need to be running in a OP-TEE thread. This is needed to be able to push the TS session (We
push the TS session to get access to the SP memory). Currently the only possibility to enter a SP from the Normal world
is via a FFA_MSG_SEND_DIRECT_REQ. Whenever we receive a FFA_MSG_SEND_DIRECT_REQ message which doesn’t
have OP-TEE as the endpoint-id, we start a thread and forward the FF-A message to the sp_msg_handler().

The sp_msg_handler() is responsible for all messages coming or going to/from a SP. It runs in a while loop and will
handle every message until it comes across a messages which is not intended for the secure world. After a message
is handled by the SPMC or when it needs to be forwarded to a SP, sp_enter() is called. sp_enter() will copy the
FF-A arguments and resume the SP.

When the SPMC needs to have access to the SPs memory, it will call ts_push_current_session() to gain access
and ts_pop_current_session() to release the access.

110 Chapter 2. Architecture

OP-TEE Documentation

Running and exiting SPs

The SPMC resumes/starts the SP by calling the sp_enter(). This will set up the SP context and jump into S-EL0.
Whenever the SP performs a system call it will end up in sp_handle_svc(). sp_handle_svc() stores the current
context of the SP and makes sure that we don’t return to S-EL0 but instead returns to S-EL1 back to sp_enter().
sp_enter() will pass the FF-A registers (x0-x7) to spmc_sp_msg_handler(). This will process the FF-A message.

RxTx buffer managment

RxTx buffers are used by the SPMC to exchange information between an endpoint and the SPMC. The rxtx_buf struct
is used by the SPMC for abstracting buffer management. Every SP has a struct rxtx_buf wich will be passed to
every function that needs access to the rxtx buffer. A separate struct rxtx_buf is defined for the Normal World,
which gives access to the Normal World buffers.

2.14.5 FF-A compliance

Legend

• Fully supported

• Partially implemented

• Not supported

• Does not apply for the FF-A instance or version

Partition boot protocol

Only FF-A v1.0 partition boot protocol is supported by the SPMC.

Supported partition manifest fields

Field Mandatory FF-A v1.0 FF-A v1.1
FF-A version Yes
UUID Yes
Partition ID No
Auxiliary IDs No
Name (description) No
Number of execution contexts Yes
Run-time EL Yes
Execution state Yes
Load address No
Entry point offset No
Translation granule No
Boot order No
RX/TX information No
Messaging method Yes
Primary scheduler implemented No
Run-time model No
Tuples No

continues on next page

2.14. SPMC 111

OP-TEE Documentation

Table 5 – continued from previous page
Field Mandatory FF-A v1.0 FF-A v1.1

Memory regions
Base address No
Load address relative offset No
Page count Yes
Attributes Yes
Name No
Stream & SMMU IDs No
Stream ID access permissions No

Device regions
Physical base address Yes
Page count Yes
Attributes Yes
Interrupts No
SMMU IDs No
Stream IDs No
Exclusive access and ownership No
Name No

Limitations

• The values of mandatory but not supported fields are ignored by the SP loader. This means all values are accepted
but the SPMC might behave differently than expected.

• Memory region attributes doesn’t support shareability and cacheability flags.

Supported FF-A interfaces

The table below describes the implementation level of each FF-A interface on different FF-A instances. The two
instances are between OP-TEE SPMC and the SPMC and between OP-TEE SPMC and its S-EL0 secure partitions.
The FF-A specification uses ‘Secure Phyisical’ and ‘Secure Virtual’ terms for these instances.

Interface OP-TEE <-> SPMD OP-TEE <-> S-EL0 SPs
FF-A v1.0 FF-A v1.1 FF-A v1.0 FF-A v1.1

FFA_ERROR
FFA_SUCCESS
FFA_INTERRUPT
FFA_VERSION
FFA_FEATURES
FFA_RX_ACQUIRE
FFA_RX_RELEASE
FFA_RXTX_MAP
FFA_RXTX_UNMAP
FFA_PARTITION_INFO_GET
FFA_ID_GET
FFA_SPM_ID_GET
FFA_MSG_WAIT
FFA_YIELD
FFA_RUN

continues on next page

112 Chapter 2. Architecture

OP-TEE Documentation

Table 6 – continued from previous page
Interface OP-TEE <-> SPMD OP-TEE <-> S-EL0 SPs

FF-A v1.0 FF-A v1.1 FF-A v1.0 FF-A v1.1
FFA_NORMAL_WORLD_RESUME
FFA_MSG_SEND
FFA_MSG_SEND2
FFA_MSG_SEND_DIRECT_REQ
FFA_MSG_SEND_DIRECT_RESP
FFA_MSG_POLL
FFA_MEM_DONATE
FFA_MEM_LEND
FFA_MEM_SHARE
FFA_MEM_RETRIEVE_REQ
FFA_MEM_RETRIEVE_RESP
FFA_MEM_RELINQUISH
FFA_MEM_RECLAIM
FFA_MEM_PERM_GET
FFA_MEM_PERM_SET
FFA_MEM_FRAG_RX
FFA_MEM_FRAG_TX
FFA_MEM_OP_PAUSE
FFA_MEM_OP_RESUME

Limitations

• FF-A v1.1 error code NO_DATA is not supported.

• FFA_SUCCESS is not supported as a response to an FFA_MSG_SEND_DIRECT_REQ message.

• Non-secure interrupts are not forwarded to the normal world via FFA_INTERRUPT.

• Interrupts cannot be forwarded to S-EL0 secure partitions.

• Only FFA_RXTX_MAP feature query is supported by the FFA_FEATURES interface. FFA_MEM_DONATE,
FFA_MEM_LEND, FFA_MEM_SHARE and FFA_MEM_RETRIEVE_REQ feature query is not implemented.

• FF-A v1.1 Flags field in FFA_MSG_SEND_DIRECT_REQ and FFA_MSG_SEND_DIRECT_RESP calls is not sup-
ported.

• Transferring memory transaction descriptors in a buffer distinct from the TX buffer is not supported by the secure
virtual instance.

• Transferring fragmented memory transaction descriptors is not supported by the secure virtual instance.

• The only supported ‘Memory region attributes descriptor’ value is normal memory, write-back cacheability
and inner shareable. All other values are denied on the secure physical instance. The secure virtual instance’s
implementation ignores the value of this descriptor but uses the same attributes for the region.

• The NS flag support in not implemented for ‘Memory region attributes descriptor’.

• Only read-write non-executable value can be used in the ‘Memory access permissions descriptor’ at the secure
phyisical instance.

• The Flags field of FFA_MEM_RELINQUISH is ignored.

• The secure phyisical instanced doesn’t implemented the receiving of FFA_MEM_RELINQUISH.

• Time slicing of memory management operations is not supported.

2.14. SPMC 113

OP-TEE Documentation

2.14.6 Configuration

SPMC config options

To configure OP-TEE as a S-EL1 SPMC with Secure Partition support, the following flags should be set for optee_os:

• CFG_CORE_SEL1_SPMC=y

• CFG_SECURE_PARTITION=y

• CFG_DT=y

• CFG_MAP_EXT_DT_SECURE=y

Furthermore TF-A should be configured as the SPMD, expecting a S-EL1 SPMC:

• SPD=spmd

• SPMD_SPM_AT_SEL2=0

• ARM_SPMC_MANIFEST_DTS=<path to SPMC manifest dts>

SP loading mechanism

OP-TEE SPMC supports two methods for finding and loading the SP executable images. Currently only ELF exe-
cutables are supported. In the build repo the loading method can be selected with the SP_PACKAGING_METHOD
option.

Embedded SP

In this case the early TA mechanism of optee_os is reused: the SP ELF files are embedded into the main OP-TEE
binary. Each ELF should start with a specific section (.sp_head) containing a struct which describes the SP (UUID,
stack size, etc.). The images can be added to optee_os using the SP_PATHS config option, the build repo will set this up
automatically when SP_PACKAGING_METHOD=embedded is selected. The images passed in SP_PATHS are processed
by ts_bin_to_c.py in optee_os and linked into the main binary. At runtime the for_each_secure_partition()
macro can iterate through these images, so a particular SP can be found by UUID and then loaded.

The SP manifest file [1] used by the SPMC to setup SPs is also handled by ts_bin_to_c.py, it will be concatenated
to the end of the SP ELF.

FIP SP

In this case the SP ELF files and the corresponding SP manifest DTs are encapsulated into SP packages and packed
into the FIP. The goal of providing this alternative flow is to make updating SPs easier (independent of the main OP-
TEE binary) and to get aligned with Hafnium (S-EL2 SPMC). For more information about the FIP, please refer to the
TF-A documentation [2]. The SP packaging process and the package format is provided by TF-A, detailed description
is available at [3]. In the build repo this method can be selected by SP_PACKAGING_METHOD=fip, it covers all the
necessary setup automatically. In case of using another buildsystem, the following steps should be implemented:

• TF-A config SP_LAYOUT_FILE: provide a JSON file which describes the SPs (path to SP executable and corre-
sponding DT, example [4]). The TF-A buildsystem will create the SP packages (using sptool) based on this and
pack them into the FIP.

• TF-A config ARM_BL2_SP_LIST_DTS: provide a DT snippet which describes the SPs’ UUIDs and load addresses
(example: [5]). This will be injected into the SP list in TB_FW_CONFIG DT of TF-A, and BL2 will load the SP
packages based on this. Note that BL2 doesn’t automatically load all images from the FIP: it’s necessary to
explicitly define them in TB_FW_CONFIG (using this injected snippet or manually editing the DT).

114 Chapter 2. Architecture

OP-TEE Documentation

• TF-A config ARM_SPMC_MANIFEST_DTS: provide the SPMC manifest (example: [6]). This DT is passed to the
SPMC as a boot argument (in the TF-A naming convention this is the TOS_FW_CONFIG). It should contain the
list of SP packages and their load addresses in the compatible = "arm,sp_pkg" node.

At boot optee_os will parse the SP package load addresses from the SPMC manifest and find the SP packages already
loaded by BL2. Iterating through the SP packages, based on the SP package header in each package it will map the SP
executable image and the corresponding manifest DT and collect these to the fip_sp_list list. Later when initialising
the SPs, the for_each_fip_sp macro is used to iterate this list and load the executables, just like for the embedded
SP case.

[1] https://trustedfirmware-a.readthedocs.io/en/v2.6/components/ffa-manifest-binding.html

[2] https://trustedfirmware-a.readthedocs.io/en/v2.6/design/firmware-design.html#firmware-image-package-fip

[3] https://trustedfirmware-a.readthedocs.io/en/v2.6/components/secure-partition-manager.html#
secure-partition-packages

[4] https://trustedfirmware-a.readthedocs.io/en/v2.6/components/secure-partition-manager.html#
describing-secure-partitions

[5] https://github.com/OP-TEE/build/blob/master/fvp/bl2_sp_list.dtsi

[6] https://github.com/OP-TEE/build/blob/master/fvp/spmc_manifest.dts

2.15 Arm Security Extensions

2.15.1 Branch Target Identification

Branch Target Identification (BTI) is an ARMv8.5 extension that provides Control Flow Integrity (CFI) around indirect
branches and their targets, thus helping to limit the JOP (Jump Oriented Programming) attacks.

With this extension, ARM8.5-A introduces Branch Target Instructions (BTIs). BTIs are also called landing pads. The
processor can be configured so that indirect branches (BR and BLR) only allows target landing pad instructions. If the
target of an indirect branch is not a landing pad, a Branch Target Exception is generated.

How to enable BTI for OP-TEE core

To make use of BTI in TEE core on CPU’s that support it, enable the option CFG_CORE_BTI.

OP-TEE core makes use of some built-ins in the GCC/clang toolchains. So, in order to use the option CFG_CORE_BTI,
make sure that GCC toolchain has been built with --enable-standard-branch-protection is used else OP-TEE
will fail to build. By default libraries such as libgcc.a are built with flags (-mbranch-protection=none), hence are
incompatible with branch protection enabled. The Arm GNU compiler team is looking for ways of providing users easy
access to BTI-enabled libraries. In the short-term, they plan to create documentation to make it easier for users to build
BTI-enabled libraries themselves. Longer-term, they will begin discussions on how to ensure BTI-enabled libraries are
available automatically to users. Please contact GCC team for more information on same. In the meantime, building a
BTI-enabled GCC toolchain is possible as decribed in Q: How can I build GCC with BTI enabled?.

The same problem is also there with clang toolchain. So, when using clang to build OP-TEE with CFG_CORE_BTI=y,
builtins (found in llvm’s “compiler-rt” project) must be built with BTI protection enabled. We have some instructions
on how to build the compiler-rt with BTI enabled. These are available in Q: How can I build LLVM compiler-rt with
BTI enabled ?.

2.15. Arm Security Extensions 115

https://trustedfirmware-a.readthedocs.io/en/v2.6/components/ffa-manifest-binding.html
https://trustedfirmware-a.readthedocs.io/en/v2.6/design/firmware-design.html#firmware-image-package-fip
https://trustedfirmware-a.readthedocs.io/en/v2.6/components/secure-partition-manager.html#secure-partition-packages
https://trustedfirmware-a.readthedocs.io/en/v2.6/components/secure-partition-manager.html#secure-partition-packages
https://trustedfirmware-a.readthedocs.io/en/v2.6/components/secure-partition-manager.html#describing-secure-partitions
https://trustedfirmware-a.readthedocs.io/en/v2.6/components/secure-partition-manager.html#describing-secure-partitions
https://github.com/OP-TEE/build/blob/master/fvp/bl2_sp_list.dtsi
https://github.com/OP-TEE/build/blob/master/fvp/spmc_manifest.dts

OP-TEE Documentation

How to enable BTI for TA’s

To make use of BTI support for TA’s and user mode libraries, enable the option CFG_TA_BTI. This will ensure that all
libraries provided by OP-TEE to the TA’s as well as the TA’s are built with BTI option.

When the TA’s are loaded by ldelf, they are checked at run time for the BTI NOTE property in ELF before enabling
the protection for the TA.

When building TA’s, you need to ensure that any external library used has been built with branch-protection. This can
be done by checking the library using readelf command with option -n. The BTI enabled libraries will have BTI NOTE
property in .note.gnu.property section. If that is not the case, compilation will stop with a warning. This is done
intentionally to warn the user.

Note: The BTI support is currently not compatible with options CFG_VIRTUALIZATION and CFG_WITH_PAGER.

2.16 Platform documentation

2.16.1 NXP

Security Disclaimer

• NXP i.MX processors have various security-relevant modules that may be configured by the customer to effec-
tively secure the device.

• These security modules vary by the i.MX product family and may include:
– The Central Security Unit (CSU) that manages the system security policy for peripheral access on

the SoC.

– The Resource Domain Controllers (RDC/XRDC/TRDC) that provide support for the isolation of
peripherals and memory.

– Arm® TrustZone® technology-based memory protection for embedded memories such as the on-
chip RAM (OCRAM).

– The TrustZone ® Address Space Controller (TZASC) that protects and secures data in a trusted
execution environment.

– The AIPSTZ bridge that provides programmable access protections for both controllers and periph-
erals.

• The default security configuration in OP-TEE OS for these security modules is left in an open (non-secure) state
because a universal secure configuration that meets all customer requirements is not possible.

• NXP delivers various open-source software components (NXP OP-TEE OS) for customer enablement, however,
these are not provided as secure production-ready implementations.

• Using OP-TEE OS upstream releases instead of NXP OPTEE-OS releases may have an impact on the features
supported and the security level of the i.MX platforms.

• Customers should optimize the security configuration in OP-TEE OS to lock and secure end products according
to their specific security requirements.

• NXP has documented how to securely configure these security modules in the respective i.MX SoC Reference
and Security manuals and also provides a Security Checklist for the i.MX family to help customers secure end
products.

116 Chapter 2. Architecture

https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors:IMX_HOME
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors:IMX_HOME

OP-TEE Documentation

• For Further assistance please contact your NXP field representative or submit an NXP Support ticket.

2.16. Platform documentation 117

https://support.nxp.com/

OP-TEE Documentation

118 Chapter 2. Architecture

CHAPTER

THREE

BUILD AND RUN

In this part of the documentation you will find information telling you how to build OP-TEE as a whole developer setup
or as individual components. Likewise it will also tell you how to run OP-TEE on various devices.

Since you pressed this, it’s likely that you want to know how to build a full OP-TEE developer setup. So a first place to
start looking is probably at the “build” page to get started.

You may also want to look at “Q: What is the quickest and easiest way to try OP-TEE?”.

3.1 Prerequisites

We believe that you can use any Linux distribution to build OP-TEE, but as maintainers of OP-TEE we are mainly
using Ubuntu-based distributions and to be able to build and run OP-TEE there are a few packages that needs to be
available. Hereafter we provide Docker files which may be used as a reference.

Ubuntu 22.04

Ubuntu 20.04

Older

FROM ubuntu:22.04
ARG DEBIAN_FRONTEND=noninteractive
RUN apt update && apt upgrade -y
RUN apt install -y \

adb \
acpica-tools \
autoconf \
automake \
bc \
bison \
build-essential \
ccache \
cpio \
cscope \
curl \
device-tree-compiler \
e2tools \
expect \
fastboot \
flex \
ftp-upload \

(continues on next page)

119

OP-TEE Documentation

(continued from previous page)

gdisk \
git \
libattr1-dev \
libcap-ng-dev \
libfdt-dev \
libftdi-dev \
libglib2.0-dev \
libgmp3-dev \
libhidapi-dev \
libmpc-dev \
libncurses5-dev \
libpixman-1-dev \
libslirp-dev \
libssl-dev \
libtool \
libusb-1.0-0-dev \
make \
mtools \
netcat \
ninja-build \
python3-cryptography \
python3-pip \
python3-pyelftools \
python3-serial \
python-is-python3 \
rsync \
swig \
unzip \
uuid-dev \
wget \
xdg-utils \
xterm \
xz-utils \
zlib1g-dev

RUN curl https://storage.googleapis.com/git-repo-downloads/repo > /bin/repo && chmod a+x␣
→˓/bin/repo
RUN mkdir /optee
WORKDIR /optee
RUN repo init -u https://github.com/OP-TEE/manifest.git -m qemu_v8.xml && repo sync -j10
WORKDIR /optee/build
RUN make -j2 toolchains
RUN make -j$(nproc) check

FROM ubuntu:20.04
ARG DEBIAN_FRONTEND=noninteractive
RUN apt update && apt upgrade -y
RUN apt install -y \

android-tools-adb \
android-tools-fastboot \
autoconf \
automake \
bc \

(continues on next page)

120 Chapter 3. Build and run

OP-TEE Documentation

(continued from previous page)

bison \
build-essential \
ccache \
cpio \
cscope \
curl \
device-tree-compiler \
expect \
flex \
ftp-upload \
gdisk \
git \
iasl \
libattr1-dev \
libcap-ng-dev \
libfdt-dev \
libftdi-dev \
libglib2.0-dev \
libgmp3-dev \
libhidapi-dev \
libmpc-dev \
libncurses5-dev \
libpixman-1-dev \
libslirp-dev \
libssl-dev \
libtool \
make \
mtools \
netcat \
ninja-build \
python-is-python3 \
python3-crypto \
python3-cryptography \
python3-pip \
python3-pyelftools \
python3-serial \
rsync \
unzip \
uuid-dev \
wget \
xdg-utils \
xterm \
xz-utils \
zlib1g-dev

RUN curl https://storage.googleapis.com/git-repo-downloads/repo > /bin/repo && chmod a+x␣
→˓/bin/repo
RUN mkdir /optee
WORKDIR /optee
RUN repo init -u https://github.com/OP-TEE/manifest.git -m qemu_v8.xml && repo sync -j10
WORKDIR /optee/build
RUN make -j2 toolchains
RUN make -j$(nproc) check

3.1. Prerequisites 121

OP-TEE Documentation

Note: No longer supported by the OP-TEE community!

Due to all changes over the years with different names of Python packages and different requirement in time for Python2
and/or Python3 packages, it’s not really possible to build more recent versions of OP-TEE with something that is older
than Ubuntu 18.04. If you for some reason need to rebuild OP-TEE using a very old distro, then the best strategy for
doing is is to check an earlier version of this documentation and start with the build instructions from there.

3.2 Device specific information

3.2.1 AMD-Xilinx Versal ACAP VCK190

Instructions below show how to run OP-TEE on the VCK190 development board. Details of the Versal ACAP can be
found in the Versal Technical Reference Manual (Versal_TRM).

Supported boards

This makefile supports the VCK190 but also supports the VMK180 development board as well.

Setting up the toolchain

This build chain relies on Petalinux 2022.1, therefore the first step will be to download and install it from the AMD-
Xilinx website (Downloads).

Then, you will also need to download the board support package (BSP) from the AMD-Xilinx website (Downloads).
It contains prebuilt firmwares and hardware definition files required to assemble a bootable image.

Note: You will need a free AMD-Xilinx account to proceed with the two previous steps.

Configuring and building for VCK190

Lets summarize the steps taken so far; these are common to all boards.

$ mkdir ~/optee-project
$ cd ~/optee-project
$ repo init -u https://github.com/OP-TEE/manifest.git -m versal.xml
$ repo sync -j4 --no-clone-bundle
$ cd build
$ make -j8 toolchains
$ make -j8

At this point we have a working directory ~/optee-project with all the repositories required with the exception of
the Versal ACAP board support package. A pre-requisite to unpacking the BSP file is installing Petalinux (install) as
previously mentioned.

Having done that, now is the time to unpack the BSP:

122 Chapter 3. Build and run

https://www.xilinx.com/products/boards-and-kits/vck190.html
https://docs.xilinx.com/r/en-US/am011-versal-acap-trm
https://www.xilinx.com/products/boards-and-kits/vmk180.html
https://docs.xilinx.com/r/en-US/ug1144-petalinux-tools-reference-guide/Installing-the-PetaLinux-Tool
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools/2022-1.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools/2022-1.html
https://docs.xilinx.com/r/en-US/ug1144-petalinux-tools-reference-guide/Installing-the-PetaLinux-Tool

OP-TEE Documentation

$ cd ~/optee-project
$ cp ~/Downloads/xilinx-vck190-v2022.1-04191534.bsp .
$ source /path/to/petalinux.2022.1/settings.sh
$ petalinux-create --type project -s xilinx-vck190-v2022.1-04191534.bsp
$ ls

xilinx-vck190-2022.1

In order for the Versal OP-TEE port to work correctly, the PLM needs to be updated to add the XilNvm and XilPuf
libraries. This can be accomplished by the following steps within the PetaLinux workspace created above:

$ mkdir project-spec/meta-user/recipes-bsp/embeddedsw
$ cp ~/optee-project/build/versal/plm-firmware_%.bbappend project-spec/meta-user/recipes-
→˓bsp/embeddedsw
$ petalinux-build -c plm

The newly created PLM will be located in the folder images/linux/plm.elf.

Note: Replace the VCK190 BSP with the VMK180 BSP if you want to build this project for the VMK180 development
board.

Before building the release, you will need to edit the Boot Image File (BIF) build/versal/
bootImage-versal-vck190.bif to point to the required BSP files. The paths for the following files in the
BIF will need to be updated before proceeding:

• vpl_gen_fixed.pdi

• plm.elf

• psmfw.elf

Note: The default PLM only contains the xilsecure library. If you would like to take advantage of all of hardware
cryptographic features implemented for Versal, you must enable the xilpuf and xilnvm libraries by following the steps
above for customizing the PLM (PLM_Customization).

The xilpuf library enables support of the physically unclonable function (PUF) and the xilnvm library enables support
of reading and writing to eFUSEs. Once these libraries are enabled, be sure to point to the updated PLM firmware in
the previously mentioned BIF file.

After you have done that you can build the images as follows:

$ cd ~/optee-project
$ cd build
$ make -f versal.mk image
$ ls versal | grep -E 'BIN|ub'
BOOT.BIN
versal-vck190.ub

3.2. Device specific information 123

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/2037088327/Versal+Platform+Loader+and+Manager#PLM-Feature-Configuration-for-PetaLinux

OP-TEE Documentation

JTAG boot to U-Boot shell

To run the bootable image BOOT.BIN via JTAG, configure the boot switches as seen below and then power up the board.

Then run the boot_jtag.sh script.

This script will first ask for the path of the Petalinux installation; once entered, it will download and execute the image
on the Versal ACAP platform.

$ cd ~/optee-project/build/versal/
$./boot_jtag.sh

SD card creation and boot

Prepare a SD card with a single bootable partition large enough to hold both of the built files.

Using gparted or any other partition manager tool create a single partition on the card (remember to flag it as bootable)

• 1GB FAT32 bootable partition (i.e: /dev/sdc1).

Once SD card is partitioned, mount it on your file system and copy the images:

$ cp ~/optee-project/build/versal/BOOT.BIN <mount_point>/
$ cp ~/optee-project/build/versal/versal-vck190.ub <mount_point>/
$ sync
$ umount <mount_point>

Now you can use the newly created SD card to boot your board. Make sure the boot switches are configured for SD
boot.

Unless you have modified the default U-boot boot command, you will need to stop the sequence at the U-boot shell and
issue these three additional commands to boot to Linux:

uboot shell$ mmc dev 0
uboot shell$ fatload mmc 0:1 0x20000000 versal-vck190.ub
uboot shell$ bootm 0x20000000

124 Chapter 3. Build and run

OP-TEE Documentation

3.2.2 DeveloperBox

The instructions here will tell how to build OP-TEE for DeveloperBox.

Build instructions

1. Follow the “Get and build the solution” in build from step 1 to step 3.

2. Initialize EDK2 submodule

1 $ cd <optee-project>/edk2
2 $ git submodule update --init

3. Follow “Get and build the solution” step 4 & 5

4. Stage a new OP-TEE update capsule. This updates TF-A, OP-TEE and UEFI.

1 $ fwupdate --apply {50b94ce5-8b63-4849-8af4-ea479356f0e3} \
2 > <optee-project>/edk2-platforms/Build/DeveloperBox/RELEASE_GCC5/FV/\
3 > SYNQUACERFIRMWAREUPDATECAPSULEFMPPKCS7.Cap

Hint: Change RELEASE_GCC5 to DEBUG_GCC5 for debug build.

5. Reboot to update.

6. Follow the rest of”Get and build the solution” from step 7

3.2.3 FVP

The instructions here will tell how to build and run OP-TEE using Foundation Models.

Build instructions

Start out by following the “Get and build the solution” as described in build. However, stop before doing “Step 5 -
Build the solution”.

Next you should obtain the Armv8-A Foundation Platform (For Linux Hosts Only). To download FVPs you’ll need to
log in to Arm Self Service. That binary should be untar’ed to the root of the repo forest, i.e., like this: <fpv-project>/
Foundation_Platformpkg. In the end after cloning all source code, getting the toolchains and “installing” Founda-
tion_Platformpkg you should have a folder structure that looks like this:

$ ls -al
drwxrwxr-x 15 jbech jbech 4096 Feb 5 09:10 .
drwxr-xr-x 22 jbech jbech 4096 Jan 15 12:45 ..
drwxrwxr-x 18 jbech jbech 4096 Feb 5 09:10 arm-trusted-firmware
drwxrwxr-x 9 jbech jbech 4096 Feb 5 09:10 build
drwxrwxr-x 15 jbech jbech 4096 Feb 5 09:10 buildroot
drwxrwxr-x 51 jbech jbech 4096 Feb 5 09:10 edk2
drwxrwxr-x 5 jbech jbech 4096 Feb 5 09:10 edk2-platforms
drwxrwxr-x 6 jbech jbech 4096 Mar 15 2018 Foundation_Platformpkg
drwxrwxr-x 15 jbech jbech 4096 Feb 5 09:10 grub
drwxrwxr-x 26 jbech jbech 4096 Feb 5 09:10 linux

(continues on next page)

3.2. Device specific information 125

https://www.96boards.org/product/developerbox/
https://developer.arm.com/products/system-design/fixed-virtual-platforms

OP-TEE Documentation

(continued from previous page)

drwxrwxr-x 6 jbech jbech 4096 Feb 5 09:10 optee_client
drwxrwxr-x 10 jbech jbech 4096 Feb 5 09:10 optee_examples
drwxrwxr-x 11 jbech jbech 4096 Feb 5 09:10 optee_os
drwxrwxr-x 8 jbech jbech 4096 Feb 5 09:10 optee_test
drwxrwxr-x 7 jbech jbech 4096 Feb 5 09:10 .repo
lrwxrwxrwx 1 jbech jbech 23 Feb 5 09:09 toolchains

When this pre-condition met you can simply continue with

$ make run

and then FVP should build the rootfs and then start the simulation and when you have a terminal you can log in and
run xtest (as described at Step 9 - Run xtest).

3.2.4 HiKey 620

The instructions here will tell how to run OP-TEE on HiKey 620.

Multiple sources for HiKey and OP-TEE instructions?

First you must understand that the HiKey project as such is led by the 96Boards project. So, if you aren’t interested
in running OP-TEE on the device, then you should stop reading here and instead have a look at the official HiKey
documentation.

For OP-TEE using HiKey you will still find information in more than one place. There are a couple of reasons for that.

• 96Boards: The official 96Boards project used to host some OP-TEE instructions and they include OP-TEE in
their official releases.

• Google: has an AOSP HiKey branch, where OP-TEE is supported to some extent.

• Linaro-SWG: The OP-TEE team has done some work related to AOSP (see the AOSP page) and there HiKey
has been one of the devices in use.

If you have questions regarding the configurations above, please reach out to the people on the right forum (96Boards,
Google and Linaro-SWG).

This particular guide is maintained by the OP-TEE core team and this is what we use when we are doing are stable
releases for our OP-TEE developer builds. I.e, for OP-TEE this should be considered as a well maintained guide with
a fully working setup.

Supported HiKey boards

There are four different versions of the HiKey board.

Name Manufacturer Memory Flash Comment
HiKey CircuitCo 1GB 4GB Green solder mask
HiKey LeMaker 1GB 8GB Black solder mask
HiKey LeMaker 2GB 8GB Black solder mask

All of them works, but where differences apply we have default configurations that works for the LeMaker 8GB eMMC
versions.

126 Chapter 3. Build and run

https://www.96boards.org/product/hikey/
http://www.96boards.org/documentation/ConsumerEdition/HiKey/README.md
http://www.96boards.org/documentation/ConsumerEdition/HiKey/README.md
https://source.android.com/setup/build/devices#620hikey
https://github.com/orgs/OP-TEE/teams/linaro/members

OP-TEE Documentation

UART adapter board

Everything is configured to use the 96Boards UART Adapter Board. The UART is by default configured to UART3.
If you don’t have any UART adapter board and instead would like to use UART0, then you need to change that before
building. See CFG_NW_CONSOLE_UART and CFG_NW_CONSOLE_UART in hikey.mk.

Build instructions

Just follow the “Get and build the solution” as described in build. The make flash step will tell you how you should
set the jumpers on the board.

Recovery

If you manage to corrupt the device, so that fastboot doesn’t load automatically on boot, then you will need to run the
recovery procedure. Basically what you will need to do is use another make target and change some jumpers. All that
is described when you run the target:

$ make recovery

3.2.5 HiKey 960

The instructions here will tell how to run OP-TEE on HiKey 960.

Supported HiKey960 boards

There are three different versions of the HiKey960 board.

Name Manufacturer Mem-
ory

Flash Comment

HiKey960 Archer-
mind/LeMaker

4GB 32GB v2 uses DIP Switches (SW2201), rev B has 4GB RAM

HiKey960 Archer-
mind/LeMaker

3GB 32GB v2 uses DIP Switches (SW2201), rev A has 3GB RAM

HiKey960 Archer-
mind/LeMaker

3GB 32GB v1 uses Jumpers (J2001)

UART adapter board

Everything is configured to use the 96Boards UART Serial adapter. The UART is by default configured to UART6. If
you have a v1 board and need to use UART5, then you need to change that before building. See CFG_CONSOLE_UART
in hikey960.mk.

3.2. Device specific information 127

http://www.96boards.org/product/uarts
https://github.com/OP-TEE/build/blob/master/hikey.mk
https://www.96boards.org/product/hikey960/
https://www.96boards.org/product/uartserial/
https://github.com/OP-TEE/build/blob/master/hikey960.mk

OP-TEE Documentation

Build instructions

Just follow the instructions at “Get and build the solution”. If make flash doesn’t work, try make recovery.

For the 4GB RAM board version (rev B), an update to the CFG_DRAM_SIZE_GB setting in conf.mk is needed. Either
update the value from 3 to 4 in conf.mk before building, or set the value on the command line when building, i.e make
PLATFORM=hikey-hikey960 CFG_DRAM_SIZE_GB=4

Recovery

If you manage to corrupt the device, such that fastboot doesn’t load automatically on boot, then you will need to run
the recovery procedure. Basically what you will need to do is use another make target and change some jumpers. All
that is described when you run the target:

External guide

https://github.com/ARM-software/arm-trusted-firmware/blob/master/docs/plat/hikey960.rst

$ make recovery

3.2.6 Juno

The instructions here will tell how to run OP-TEE on the Juno board. The instructions has been tested and verified on
the Juno r0 revision (see Juno revisions for more details).

Regular build

First step is to start out by following the instructions in the Get and build the solution as described in build.

Deploy files on the device

Enter the firmware console on the Juno board and press enter to stop the auto boot.

ARM V2M_Juno Firmware v1.3.9
Build Date: Nov 11 2015

Time : 12:50:45
Date : 29:03:2016

Press Enter to stop auto boot...

Enable FTP at the firmware prompt.

Cmd> ftp_on
Enabling ftp server...
MAC address: xxxxxxxxxxxx

IP address: 192.168.1.158

Local host name = V2M-JUNO-A2

128 Chapter 3. Build and run

https://github.com/OP-TEE/optee_os/blob/master/core/arch/arm/plat-hikey/conf.mk
https://github.com/OP-TEE/optee_os/blob/master/core/arch/arm/plat-hikey/conf.mk
https://github.com/ARM-software/arm-trusted-firmware/blob/master/docs/plat/hikey960.rst
https://community.arm.com/dev-platforms/w/docs/253/juno-board-revisions

OP-TEE Documentation

Flash the binary by running

Note: Use the IP address from output from previous command.

$ make JUNO_IP=192.168.1.158 flash

Once all binaries have been transferred, reboot the board:

Cmd> reboot

Update the flash layout

The flash layout for Juno may need to be updated for the flashing above to work. If flashing fails or if TF-A refuses to
boot due to wrong version of the SCP binary, then the flash(-layout) needs to be updated. To update the flash please
follow the instructions at Arm’s old release notes page selecting one of the zips under “Development boards / Juno /
Prebuilt configurations” and flash it as described at Run the Arm Platforms deliverables on Juno.

GlobalPlatform testsuite support

Note: Depending on the Juno pre-built configuration, the built ramdisk.img size with GlobalPlatform testsuite may
exceed its pre-defined Juno flash memory reserved location (image.txt file). In that case, you will need to extend
the Juno flash block size reserved location for the ramdisk.img in the image.txt file accordingly and follow the
instructions under “5.7.1 Update flash and its layout”.

Example

Example with juno-latest-busybox-uboot.zip. The current ramdisk.img size with GlobalPlatform testsuite is
8.6 MBytes and that is too big to fit in the default configuration, therefore we need to make adjustments to the flash
layout. You will do that by making changes to /JUNO/SITE1/HBI0262B/images.txt. I.e., from:

1 NOR4UPDATE: AUTO ;Image Update:NONE/AUTO/FORCE
2 NOR4ADDRESS: 0x01800000 ;Image Flash Address
3 NOR4FILE: \SOFTWARE\ramdisk.img ;Image File Name
4 NOR4NAME: ramdisk.img
5 NOR4LOAD: 00000000 ;Image Load Address
6 NOR4ENTRY: 00000000 ;Image Entry Point

to extending the Image Flash Address to 16MB

1 NOR4UPDATE: AUTO ;Image Update:NONE/AUTO/FORCE
2 NOR4ADDRESS: 0x01000000 ;Image Flash Address
3 NOR4FILE: \SOFTWARE\ramdisk.img ;Image File Name
4 NOR4NAME: ramdisk.img
5 NOR4LOAD: 00000000 ;Image Load Address
6 NOR4ENTRY: 00000000 ;Image Entry Point

3.2. Device specific information 129

https://community.arm.com/dev-platforms/w/docs/226/old-release-notes
https://community.arm.com/dev-platforms/w/docs/391/run-the-arm-platforms-deliverables-on-juno

OP-TEE Documentation

GCC > 5.x support

Note: In case you are using the latest version of the OP-TEE Arm Juno build (i.e., juno.xml manifest), then the
ramdisk.img built with a GCC version newer than 5.x will be bigger than built with older GCC versions. This means
that you will need to update the sections in image.txt that tells where various images will start (see the image.txt
file).

To solve this problem you will need to extend the Juno flash block size reserved location for the ramdisk.img and
decrease the size for other images in the image.txt file accordingly in the same manner as described in the previous
section above.

For example with juno-latest-busybox-uboot.zip. The current ramdisk.img size with GCC 5.x compiler is
29.15MB and therefore we will need to extend that size for that to 32MB. You do that by changing the highlighted ones
(i.e., Image Flash Address) in file /JUNO/SITE1/HBI0262B/images.txt.

1 NOR2UPDATE: AUTO ;Image Update:NONE/AUTO/FORCE
2 NOR2ADDRESS: 0x00100000 ;Image Flash Address
3 NOR2FILE: \SOFTWARE\Image ;Image File Name
4 NOR2NAME: norkern ;Rename kernel to norkern
5 NOR2LOAD: 00000000 ;Image Load Address
6 NOR2ENTRY: 00000000 ;Image Entry Point
7

8 NOR3UPDATE: AUTO ;Image Update:NONE/AUTO/FORCE
9 NOR3ADDRESS: 0x02C00000 ;Image Flash Address

10 NOR3FILE: \SOFTWARE\juno.dtb ;Image File Name
11 NOR3NAME: board.dtb ;Specify target filename to preserve file extension
12 NOR3LOAD: 00000000 ;Image Load Address
13 NOR3ENTRY: 00000000 ;Image Entry Point
14

15 NOR4UPDATE: AUTO ;Image Update:NONE/AUTO/FORCE
16 NOR4ADDRESS: 0x00D00000 ;Image Flash Address
17 NOR4FILE: \SOFTWARE\ramdisk.img ;Image File Name
18 NOR4NAME: ramdisk.img
19 NOR4LOAD: 00000000 ;Image Load Address
20 NOR4ENTRY: 00000000 ;Image Entry Point
21

22 NOR5UPDATE: AUTO ;Image Update:NONE/AUTO/FORCE
23 NOR5ADDRESS: 0x02D00000 ;Image Flash Address
24 NOR5FILE: \SOFTWARE\hdlcdclk.dat ;Image File Name
25 NOR5LOAD: 00000000 ;Image Load Address
26 NOR5ENTRY: 00000000 ;Image Entry Point

3.2.7 NUVOTON

The instructions here will tell how to build and run OP-TEE OS for Nuvoton platform standalone (not as a part of
openbmc image).

130 Chapter 3. Build and run

OP-TEE Documentation

Build instructions

Pre-requirements:

1. Install prerequisites according to the Prerequisites page.`

2. Download the latest IGPS from the Nuvoton Israel GitHub repository

$ git clone https://github.com/Nuvoton-Israel/igps-npcm8xx

#. Download and extract the latest Linux based Arm GNU Toolchain for aarch64 bare-metal target, for example, 12.2

$ cd /opt
$ wget https://developer.arm.com/-/media/Files/downloads/gnu/12.2.rel1/binrel/
→˓arm-gnu-toolchain-12.2.rel1-x86_64-aarch64-none-elf.tar.xz?
→˓rev=28d5199f6db34e5980aae1062e5a6703&
→˓hash=D87D4B558F0A2247B255BA15C32A94A9F354E6A8
$ tar xvf arm-gnu-toolchain-12.2.rel1-x86_64-aarch64-none-elf.tar.xz

1. Add the Arm GNU Toolchain binary to the $PATH

$ cd ~
$ vi .bashrc
export PATH=$PATH:/opt/arm-gnu-toolchain-12.2.rel1-x86_64-aarch64-none-elf/
→˓bin

2. Clone the latest OP-TEE OS code from the GitHub repository

$ git clone https://github.com/OP-TEE/optee_os.git
$ cd optee_os

Build process:

1. build OP-TEE OS for Nuvoton platform

$ make CROSS_COMPILE64=aarch64-none-elf- PLATFORM=nuvoton -j $(nproc)

Note: you can use additional debug flag for compilation to get debug prints to console

$ make CROSS_COMPILE64=aarch64-none-elf- PLATFORM=nuvoton CFG_NPCM_DEBUG=y -
→˓j $(nproc)

2. Update binary input files in IGPS

$ cd ../igps-npcm8xx/py_scripts
$ python ./UpdateInputsBinaries_Arbel_A1_EB.py

3. Copy the compiled out/arm-plat-nuvoton/core/tee.bin file into IGPS_3.8.6/py_scripts/ImageGeneration/inputs

4. Generate new image file

$ python ./GenerateAll.py

5. Program the new image to flash:

3.2. Device specific information 131

OP-TEE Documentation

$ python ./ProgramAll_Secure.py

6. After programming, enable terminal connection to the ArbelEVB, and if you compiled with the
CFG_NPCM_DEBUG=y flag, you will see OP-TEE version before U-Boot console trace messages, for example:

I/TC: >== I/TC: OP-TEE OS Version 3.21.0-
1127-gaf809d0ab-dev (gcc version 12.2 (Arm GNU Toolchain 12.2.Rel1)) #1 Thu May 18 05:24:18 UTC 2023
aarch64 I/TC: >==

On this page you will find device specific information for QEMU v7 (Armv7-A) and QEMU v8 (Armv8-A).

3.2.8 QEMU v7

The instructions here will tell how to run OP-TEE using QEMU for Armv7-A.

Build instructions

As long as you pick the v7 manifest, i.e., default.xml the “Get and build the solution” tells all you need to know to
build and boot up QEMU v7.

A usual short shell sequence to fetch, build and run OP-TEE using QEMU for Armv7-A is like the one below:

$ mkdir optee
$ cd optee
$ repo init -u https://github.com/OP-TEE/manifest.git
$ repo sync
$ cd build
$ make toolchains
$ make run

Hint: If you do not want to check out the latest version of OP-TEE, but rather a specific tagged version, you
can use repo init -u https://github.com/OP-TEE/manifest.git -b <branchname>. e.g., repo init -u
https://github.com/OP-TEE/manifest.git -b 3.16.0. You can see valid branch names by inspecting the OP-
TEE/manifest git repository on https://github.com/OP-TEE/manifest/branches.

To speed up your build, you can make use of the parallel make feature. For example, use make -j32 run to have 32
build processes running concurrently. Note that this will make it much more difficult to spot errors if something fails;
therefore fall back to sequential builds to view build errors and produce logs for bug reports.

Consoles

After running make run you will end up in the QEMU console and it will also spawn two UART consoles. One console
containing the UART for secure world and one console containing the UART for normal world. You will see that it
stops waiting for input on the QEMU console. To continue, do:

(qemu) c

132 Chapter 3. Build and run

https://github.com/OP-TEE/manifest/branches

OP-TEE Documentation

Host-Guest folder sharing

You can use the VirtFS QEMU feature to avoid changing rootfs CPIO archive every time you need to add additional
files or modify existing files. To do this, you share a folder between the guest and host operating systems. To enable
and use this feature you have to provide additional arguments when running make, example:

$ make QEMU_VIRTFS_ENABLE=y QEMU_USERNET_ENABLE=y

Hint: You can also add QEMU_VIRTFS_HOST_DIR=<share> in case you don’t want to use the default sharing location
(which is the root of <qemu-v7-project>).

When QEMU with OP-TEE is up and running, you can mount the host folder in QEMU (normal world UART).

mount -t 9p -o trans=virtio host <mount_point>

<mount_point> here is folder in the QEMU where you want to mount the host PC’s shared folder. So if you want to
mount it at /mnt/host you typically do this from QEMU NW/UART.

mkdir -p /mnt/host
mount -t 9p -o trans=virtio host /mnt/host

Networking

After booting QEMU, eth0 will automatically receive an IP address from QEMU via DHCP using the SLiRP user
networking feature. QEMU will act as a gateway to the host network SLiRP.

Please note that ICMP won’t work in the guest unless additional configuration is made, so the ping utility won’t work.

GDB - Normal world

If you need to debug a client application, using GDB in a remote debugging configuration may be useful. Remote
debugging means gdb runs on your PC, where it can access the source code, while the program being debugged runs
on the remote system (in this case, in the QEMU environment in normal world). Here is how to do that. On your PC,
build with GDBSERVER=y:

$ cd <qemu-v7-project>/build
You **only** need to rm -rf the first time you build with the new flag.
If you omit doing so, it's likely that you will see "stamp" errors in the
build log.
$ rm -rf <qemu-v7-project>/out-br
$ make -j8 run GDBSERVER=y

Boot up as usual

(qemu) c

Inside QEMU (Normal World UART), run your application with gdbserver (for example xtest 4002):

gdbserver :12345 xtest 4002
Process xtest created; pid = 654
Listening on port 12345

3.2. Device specific information 133

https://wiki.qemu.org/Documentation/Networking#User_Networking_.28SLIRP.29

OP-TEE Documentation

Back on your PC, open another terminal, start GDB and connect to the target:

$ <qemu-v7-project>/out-br/host/bin/arm-buildroot-linux-gnueabihf-gdb
(gdb) set sysroot <qemu-v7-project>/out-br/host/arm-buildroot-linux-gnueabihf/sysroot
(gdb) target remote :12345

Now GDB is connected to the remote application. You may use GDB normally.

(gdb) b main
(gdb) c

GDB - Secure world

TEE core debugging

To debug TEE core running QEMU with GDB, you need to disable TEE ASLR with CFG_CORE_ASLR=n flag. Fur-
thermore, note that it’s easier to debug if you have optimization disabled. Other than that you will have four consoles
that you are working with.

• Qemu console

• NW UART console

• SW UART console

• GDB console

All of them but the GDB console are consoles you normally will see/use when running OP-TEE/xtest using QEMU.
The first thing is to start QEMU, i.e.,

$ cd <qemu-v7-project>/build
make run-only also works if you don't want to rebuild things
$ make run CFG_CORE_ASLR=n

Next launch another console for GDB and do this

$ cd <qemu-v7-project>/toolchains/aarch32/bin
$./arm-linux-gnueabihf-gdb -q

In the GDB console connect to the QEMU GDB server, like this (the output is included to show what you normally
will see).

(gdb) target remote localhost:1234
Remote debugging using localhost:1234
warning: No executable has been specified and target does not support
determining executable automatically. Try using the "file" command.
0x00000000 in ?? ()

Still in the GDB console, load the symbols for TEE core

(gdb) symbol-file <qemu-v7-project>/optee_os/out/arm/core/tee.elf
Reading symbols from <qemu-v7-project>/optee_os/out/arm/core/tee.elf...done.

Now you can set a breakpoint for any symbol in OP-TEE, for example

134 Chapter 3. Build and run

OP-TEE Documentation

(gdb) b tee_entry_std
Breakpoint 1 at 0xe103012: file core/arch/arm/tee/entry_std.c, line 526.

Last step is to initiate the boot, do that also from the GDB console

(gdb) c
Continuing.

At this point will see UART output in the Normal world console as well as the Secure world UART console. If you
now for example Run xtest, then you will rather soon hit the breakpoint we previously set and you will see something
like this in the GDB console:

Continuing.
[Switching to Thread 2]

Thread 2 hit Breakpoint 1, tee_entry_std (smc_args=0xe183f18
<stack_thread+8216>) at core/arch/arm/tee/entry_std.c:526
526 struct optee_msg_arg *arg = NULL; /* fix gcc warning */
(gdb)

From here you can start to poke around with GDB, single step, read memory, read registers, print variables and all sorts
of things that you normally do with a debugger.

Hint: Some people find it easier to also see the source code while debugging. You can enable the “TUI mode” to see
the source code in GDB. To enable that, run GDB with

$./arm-linux-gnueabihf-gdb -q -tui

3.2.9 QEMU v8

The instructions here will tell how to run OP-TEE using QEMU for Armv8-A.

Build instructions

As long as you pick the v8 manifest, i.e., qemu_v8.xml the “Get and build the solution” tells all you need to know to
build and boot up QEMU v8.

A usual short shell sequence to fetch, build and run OP-TEE using QEMU for Armv8-A is like the one below:

$ mkdir optee
$ cd optee
$ repo init -u https://github.com/OP-TEE/manifest.git -m qemu_v8.xml
$ repo sync
$ cd build
$ make toolchains
$ make run

All other things (networking, GDB etc) in the v7 section above is also applicable on QEMU v8 as long as you replace
<qemu-v7-project> with <qemu-v8-project> to get the correct paths relative to your QEMU v8 setup.

3.2. Device specific information 135

OP-TEE Documentation

3.2.10 ROCK Pi 4

The instructions here will tell how to run OP-TEE on ROCK Pi 4 / ROCK 4 boards.

Supported ROCK Pi 4 boards

There are several versions of the ROCK Pi 4 board, each with 1GB, 2GB or 4GB RAM options. OP-TEE has been
tested and is known to work with a Rock Pi 4 Model B OP1 4GB. Other variants will likely work too.

UART

The console can be accessed using a USB adapter connected to the board as described in the serial console documen-
tation.

Build instructions

Just follow the “Get and build the solution” as described in build. To flash the board you will need a USB type A to
type A cable. The make flash step will tell you how to connect the cable and use the buttons.

3.2.11 Raspberry Pi 3

Sequitur Labs did the initial OP-TEE port which at the time also came with modifications in U-Boot, Trusted Firmware
A and Linux kernel. Since that initial port more and more patches have found mainline trees and today the OP-TEE
setup for Raspberry Pi 3 uses only upstream tree’s with the exception of Linux kernel.

Disclaimer

Warning: This port of Trusted Firmware A and OP-TEE to Raspberry Pi 3 IS NOT SECURE! Although the
Raspberry Pi3 processor provides ARM TrustZone exception states, the mechanisms and hardware required to im-
plement secure boot, memory, peripherals or other secure functions are not available. Use of OP-TEE or TrustZone
capabilities within this package does not result in a secure implementation. This package is provided solely for
educational purposes and prototyping.

What is expected to work?

First, note that all OP-TEE developer builds (ref, build) have rather simple overall goals:

• Successfully build OP-TEE for certain devices.

• Run xtest and optee_example binaries successfully with no regressions using UART(s).

I.e., it is important to understand that our “OP-TEE developer builds” shall not be compared with full Linux distributions
which supports “everything”. As a couple of examples, we don’t enable any particular drivers in Linux kernel, we don’t
include all sorts of daemons, we do not include an X-environment etc. At the same time this doesn’t mean that you
cannot use OP-TEE in real environments. It is usually perfectly fine to run on all sorts of devices, environments etc.
It’s just that for the OP-TEE developer builds we have intentionally stripped down the environment to make it rather
fast to get all the source code, build it all and run xtest.

We are highlighting this here, since over the years we have had many questions at GitHub about things that people
usually find working on their Raspberry Pi devices when they are using Raspbian (which this is not). The table below

136 Chapter 3. Build and run

https://wiki.radxa.com/RockPi4
https://wiki.radxa.com/Rock4
https://wiki.radxa.com/Rockpi4/dev/serial-console
http://www.sequiturlabs.com

OP-TEE Documentation

describes what is officially supported in the Raspberry Pi 3 OP-TEE developer builds and right after that follows sections
for each of giving a bit more context to it.

Name Supported?
Buildroot Yes
HDMI No
NFS Yes
Random packages Maybe
Raspbian No
Secure boot Maybe
TFTP Yes
UART Yes
Wi-Fi No

Buildroot

We are using Buildroot as the tool to create a stripped down filesystem for Linux where we also put OP-TEE binaries
like Trusted Applications, client libraries and TEE supplicant. If a user wants to add/enable additional packages, then
that is also possible by adding new lines in common.mk in build (search for BR2_PACKAGE_ in the git to see how it’s
done).

HDMI

X isn’t enabled and we have not built nor enabled any drivers for graphics.

NFS

Works to boot up a Linux root filesystem, more on that further down.

Random packages

See the Buildroot section above. You can enable packages supported by Buildroot, but as mentioned initially in this
section, lack of drivers and other daemons etc might make it impossible to run.

Raspbian

We are not using it. However, people (from Sequitur Labs) have successfully been able to add OP-TEE to Raspbian
builds. But since we’re not using it and haven’t tried, we simply don’t support it.

3.2. Device specific information 137

http://www.sequiturlabs.com

OP-TEE Documentation

Secure boot

First pay attention to the initial warning on this page. I.e., no matter what you are doing with Raspberry Pi and TrustZone
/ OP-TEE you cannot make it secure. But that doesn’t mean that you cannot “enable” secure features as such for
prototyping and to learn how to build and use those. That kind of knowledge can later on be transferred and used
on other devices which have all the necessary secure capabilities needed to make a secure system. We haven’t tested
to enable secure boot on Raspberry Pi 3. But we believe that a good starting point would be Trusted Firmware A’s
documentation about the “Authentication Framework” and RPi3 in TF-A.

TFTP

When you reach U-Boot (see Boot sequence), then you can start using TFTP to load boot firmware etc. Note that if you
overwrite armstub8.bin for example and that happens to be faulty, then you will need to re-mount the BOOT partition
on the SD-card and put a new working version of it. Also note that changing early boot binaries (TF-A, OP-TEE core
etc) will require you to reboot the device see the changes.

UART

Fully supported, for more details look at the UART section further down.

Wi-Fi

Even though Raspberry Pi 3 has a Wi-Fi chip, we do not support it in our stripped down builds.

What versions of Raspberry Pi will work?

Below is a table of supported hardware in our OP-TEE developer builds. We have only used the Raspberry Pi 3 Model
B, i.e., the first RPi 3 device that was released. But we know that people have successfully been able to use it with
both RPi 2’s as well as the newer RPi 3 B+. But as long as we in the core team doesn’t have those at hands we cannot
guarantee anything, therefore we simply say “No” below.

Hardware Supported?
Raspberry Pi 1 Model A No
Raspberry Pi 1 Model B No
Raspberry Pi 1+ Model A No
Raspberry Pi 1+ Model B No
Raspberry Pi 2 Model B No
Raspberry Pi 2 Model B v1.2 No
Raspberry Pi 3+ Model A No
Raspberry Pi 3 Model B Yes
Raspberry Pi 3+ Model B Yes
Raspberry Pi 4 No
Zero - all versions No
Compute module - all versions No

138 Chapter 3. Build and run

https://github.com/ARM-software/arm-trusted-firmware/blob/master/docs/auth-framework.rst
https://github.com/ARM-software/arm-trusted-firmware/blob/master/docs/plat/rpi3.rst
https://github.com/orgs/OP-TEE/teams/linaro/members

OP-TEE Documentation

Boot sequence

• The GPU starts executing the first stage bootloader, which is stored in ROM on the SoC. The first stage bootloader
reads the SD-card, and loads the second stage bootloader (bootcode.bin) into the L2 cache, and runs it.

• bootcode.bin enables SDRAM, and reads the third stage bootloader loader.bin from the SD-card into RAM,
and runs it.

• loader.bin reads the GPU firmware (start.elf).

• start.elf reads config.txt, pre-loads armstub8.bin (which contains: BL1/TF-A + BL2/TF-A + BL31/TF-
A + BL32/OP-TEE + BL33/U-boot) to 0x0 and jumps to the first instruction.

• A traditional boot sequence of TF-A -> OP-TEE -> U-boot is performed, i.e., BL1 loads BL2, then BL2 loads
and run BL31(SM), BL32(OP-TEE), BL33(U-boot) (one after another)

• U-Boot runs fatload/booti sequence to load from eMMC to RAM both zImage and then DTB and boot.

Build instructions

1. Start by following the Get and build the solution as described in build, but stop at the “Step 6 - Flash the device”
step (i.e., don’t run the make flash command!).

2. Next step is to partition and format the memory card and to put the files onto the same. That is something we
don’t want to automate, since if anything goes wrong, in worst case it might wipe one of your regular hard disks.
Instead what we have done, is that we have created another makefile target that will tell you exactly what to do.
Run that command and follow the instructions there.

$ make img-help

Note: The mention of /dev/sdx1 and /dev/sdx2 when running the command above are just examples. You
need to figure out and replace that with the correct name(s) for your computer and SD-card (typically run dmesg
and look for the device name matching your SD-card).

3. Put the SD-card back into the Raspberry Pi 3.

4. Plug in the UART cable and attach to the UART

$ picocom -b 115200 /dev/ttyUSB0

Note: Install picocom if not already installed $ sudo apt-get install picocom.

5. Power up the Raspberry Pi 3 and the system shall start booting which you will see on the UART (not HDMI).

6. When you have a shell, then it’s simply just to follow the “Step 9 - Run xtest” instructions.

3.2. Device specific information 139

OP-TEE Documentation

NFS boot

Booting via NFS is quite useful for several reasons, but the obvious reason when working with Raspberry Pi is that you
don’t have to move the SD-card back and forth between the host machine and the Raspberry Pi 3 itself when working
with Normal World files, like Linux kernel and user space programs. Here we will describe how to setup NFS server,
so the rootfs can be mounted via NFS.

Warning: This guide doesn’t focus on any desktop security, so eventually you would need to harden your setup.

In the description below we will use the following terminology, IP addresses and paths. The reader of this guide is
supposed to update this to match his own environment.

192.168.1.100 <--- This is your desktop computer (NFS server)
192.168.1.200 <--- This is the Raspberry Pi
/srv/nfs/rpi <--- Location for the NFS share

Configure NFS

Start by installing the NFS server

$ sudo apt-get install nfs-kernel-server

Then edit the exports file,

$ sudo vim /etc/exports

In this file you shall tell where your files/folder are and the IP’s allowed to access the files. The way it’s written below
will make it available to every machine on the same subnet (again, be careful about security here). Let’s add this line
to the file (it’s the only line necessary in the file, but if you have several different filesystems available, then you should
of course add them too, one line for each share).

/srv/nfs/rpi 192.168.1.0/24(rw,sync,no_root_squash,no_subtree_check)

Next create the folder where you are going to put the root filesystem

$ sudo mkdir /srv/nfs/rpi

After this, restart the NFS kernel server

$ service nfs-kernel-server restart

Hint: To see that your shares are correctly setup and that the NFS server is running, you can run: $ showmount
--all localhost and you should get a list of IP:<path>'s based on what you have added in your exports file. If
you get nothing there, then your NFS server hasn’t been setup correctly.

140 Chapter 3. Build and run

OP-TEE Documentation

Prepare files to be shared

We are now going to put the root filesystem on the location we prepared in the previous section.

Note: The path to the rootfs.cpio.gz refers to <rpi3-project>, replace this so it matches your setup.

$ cd /srv/nfs/rpi
$ sudo gunzip -cd <rpi3-project>/out-br/images/rootfs.cpio.gz | sudo cpio -idmv
$ sudo rm -rf /srv/nfs/rpi/boot/*

uboot.env configuration

The file uboot.env contains boot configurations that tells what binaries to load and at what addresses. When using
NFS you need to tell U-Boot where the NFS server is located (IP and path). Since the exact IP and path varies for each
user, we must update uboot.env accordingly.

There are two ways to update uboot.env, one is to update uboot.env.txt (in build) and the other is to update directly
from the U-Boot console. Pick the one that you suits your needs. We will cover each of them separately here.

Change uboot.env.txt

In an editor open: <rpi3-project>/build/rpi3/firmware/uboot.env.txt and change:

• nfsserverip to match the IP address of your NFS server.

• gatewayip to the IP address of your router.

• nfspath to the exported filesystem in your NFS share.

As an example a section of uboot.env.txt could look like this:

NFS/TFTP boot configuraton
gatewayip=192.168.1.1
netmask=255.255.255.0
nfsserverip=192.168.1.100
nfspath=/srv/nfs/rpi

Next, you need to re-generate uboot.env:

$ cd <rpi3-project>/build
$ make u-boot-env-clean
$ make u-boot-env

Finally, you need to copy the updated <rpi3-project>/out/uboot.env to the BOOT partition of your SD-card
(mount it as described in Build instructions and then just overwrite (cp) the file on the BOOT partition of your SD-
card).

3.2. Device specific information 141

OP-TEE Documentation

Update u-boot.env from U-Boot console

Boot up the device until you see U-Boot running and counting down, then hit any key and will see the U-Boot> prompt.
You can then update the nfsserverip, gatewayip and nfspath by writing

U-Boot> setenv nfsserverip '192.168.1.100'
U-Boot> setenv gatewayip '192.168.1.1'
U-Boot> setenv nfspath '/srv/nfs/rpi'

If you want those environment variables to persist between boots, then type.

U-Boot> saveenv

Boot up with NFS

With all preparations above done correctly, you should now be able to boot up the device and kernel, secure side OP-
TEE and the entire root filesystem should be loaded from the network shares (NFS). Power up the Raspberry, halt in
U-Boot and then type.

U-Boot> run nfsboot

If everything works, you can simply copy paste files like xtest, Trusted Applications and other things that usually
resides on the host PC’s filesystem, i.e., directly from your build folders to the /srv/nfs/rpi/... folders. By doing
so you don’t have to reboot the device when doing development and testing. Just rebuild and copy is sufficient.

Note: You cannot make symlinks in the NFS share to the built files, i.e., you must copy them!

JTAG

To enable JTAG you need to add a line saying enable_jtag_gpio=1 in config.txt. There are two ways you can do
this, both requires that you to mount the BOOT partition on the SD-card at your computer (see the make img-help
step under Build instructions). After you have mounted the BOOT partition continue with whichever way is most
suitable for you.

Change config.txt directly

With your editor, open /media/boot/config.txt and add a line enable_jtag_gpio=1, save the file, unmount the
BOOT partition and you’re good to go after rebooting the device.

Rebuild and untar

1. With your editor, open <rpi3-project>/build/rpi3/firmware/config.txt and add a line
enable_jtag_gpio=1, save the file.

2. $ cd <rpi3-project>/build && make

3. $ cd /media

142 Chapter 3. Build and run

OP-TEE Documentation

4. $ sudo gunzip -cd <rpi3-project>/out-br/images/rootfs.cpio.gz | sudo cpio -idmv
"boot/*"

Note: You didn’t forget to mount the BOOT partition before trying this step?

5. Unmount the BOOT partition and you’re good to go after rebooting the device.

JTAG/RPi3 cable

We have created our own cables that consists of a standard 20-pin JTAG connector and a 22-pin connector for the
Raspberry Pi 3 itself. Then using a ribbon cable we have connected the cables according to the table below (JTAG pin
<-> Raspberry Pi 3 Header pin).

JTAG pin Signal GPIO Mode RPi3 Header pin
1 3v3 N/A N/A 1
3 nTRST GPIO22 ALT4 15
5 TDI GPIO26 ALT4 37
7 TMS GPIO27 ALT4 13
9 TCK GPIO25 ALT4 22
11 RTCK GPIO23 ALT4 16
13 TDO GPIO24 ALT4 18
18 GND N/A N/A 14
20 GND N/A N/A 20

Warning: Be careful and cross check the wiring as incorrect wiring might damage your device! Also be careful
to connect the cable correctly at both ends (don’t flip it and don’t put it at the wrong pins in the Raspberry Pi 3 side).

UART/RPi3 cable

In addition to the JTAG connections we have also wired up the RX/TX to be able to use the UART. Note, for this you
don’t need to do JTAG wirings, i.e., it’s perfectly fine to just wire up the UART only. There are many ready made cables
for this on the net (eBay) and cost almost nothing. Get one of those if you don’t intend to use JTAG.

UART pin Signal GPIO Mode RPi3 Header pin
Black (GND) GND N/A N/A 6
White (RXD) TXD GPIO14 ALT0 8
Green (TXD) RXD GPIO15 ALT0 10

Warning: Be careful and cross check the wiring as incorrect wiring might damage your device!

3.2. Device specific information 143

https://www.ebay.com/sch/i.html?&_nkw=UART+cable

OP-TEE Documentation

OpenOCD

Build OpenOCD

Before building OpenOCD, ensure that you have the libusb-dev installed.

$ sudo apt-get install libusb-1.0-0-dev

We are using the official OpenOCD release, simply clone that to your computer and then building is like a lot of other
software, i.e.,

$ git clone http://repo.or.cz/openocd.git
$ cd openocd
$./bootstrap
$./configure
$ make

Note: In recent versions of OpenOCD, the legacy ft2332 support has been depracted. All these devices now uses libftdi
instead. From OpenOCD release notes: “GPL-incompatible FTDI D2XX library support dropped (Presto, OpenJTAG
and USB-Blaster I are using libftdi only now)”.

We leave it up to the reader of this guide to decide if he wants to install it properly (make install) or if he will just
run it from the tree directly. The rest of this guide will just run it from the tree.

OpenOCD RPi3 configuration file

Unfortunately, the necessary RPi3 OpenOCD config isn’t upstreamed yet into the official OpenOCD repository, so you
should use the one stored here <rpi3-project/build/rpi3/debugger/pi3.cfg.

Running OpenOCD

Depending on the JTAG debugger you are using you’ll need to find and use the interface file for that particular debugger.
We’ve been using J-Link debuggers and Bus Blaster successfully. To start an OpenOCD session using a J-Link device
you type:

$ cd <openocd>
$./src/openocd -f ./tcl/interface/jlink.cfg -f <rpi3-project>/build/rpi3/debugger/pi3.
→˓cfg

For Bus Blaster type:

$./src/openocd -f ./tcl/interface/ftdi/dp_busblaster.cfg \ -f <rpi3_repo_dir>/build/
→˓rpi3/debugger/pi3.cfg

To be able to write commands directly to OpenOCD, you simply open up another shell and type:

$ nc localhost 4444

From there you can set breakpoints, examine memory etc (”> help” will give you a list of available commands).
Having that said, if you connect to OpenOCD using GDB, then there is not much incentive connecting to OpenOCD
directly, since you will be able to do the same in GDB by the monitor command.

144 Chapter 3. Build and run

http://openocd.org
https://github.com/OP-TEE/build/blob/master/rpi3/debugger/pi3.cfg
http://openocd.org
https://www.segger.com/jlink_base.html
http://dangerousprototypes.com/docs/Bus_Blaster

OP-TEE Documentation

Use GDB

OpenOCD will by default listen to GDB connections on port 3333. So after starting OpenOCD, make a connection to
GDB.

Ensure that you have "gdb" in your $PATH
$ aarch64-linux-gnu-gdb -q
(gdb) target remote localhost:3333

To load symbols you just use the symbol-file <path/to/my.elf as usual. For convenience you can create an alias
in the ~/.gdbinit file. For TEE core debugging this works:

define jtag_rpi3
target remote localhost:3333
symbol-file <rpi3-project>/optee_os/out/arm/core/tee.elf

end

So, when running GDB, you simply type: (gdb) jtag_rpi3 and it will both connect and load the symbols for TEE
core. For Linux kernel and other binaries you would do the same.

Debug session example

After making an initial Raspberry Pi 3 build for OP-TEE where you’ve enabled JTAG, installed and built OpenOCD,
connected the JTAG cable, then you’re ready for debugging OP-TEE using JTAG on Raspberry 3. Boot up the Rasp-
berry Pi 3 until you are in Linux and ready to run xtest. Start a new shell (on the host machine) where you run
OpenOCD:

$ cd <openocd>
$./src/openocd -f ./tcl/interface/jlink.cfg -f <rpi3-project>/build/rpi3/debugger/pi3.
→˓cfg

Start another shell, where you run GDB

$ <rpi3-project>/toolchains/aarch64/bin/aarch64-linux-gnu-gdb -q
(gdb) target remote localhost:3333
(gdb) symbol-file <rpi3-project>/optee_os/out/arm/core/tee.elf

Next, try to set a breakpoint for the function hmac_init, here use hardware breakpoints (i.e., hb)!

(gdb) hb hmac_init
Hardware assisted breakpoint 2 at 0x1012a178: file core/lib/libtomcrypt/src/mac/hmac/
→˓hmac_init.c, line 65.
(gdb) c
Continuing.

In the UART console (RPi3/Linux), run xtest.

xtest

And shortly thereafter you will see GDB stops on your breakpoint and from there you can debug using normal GDB
commands.

3.2. Device specific information 145

OP-TEE Documentation

3.2.12 STM32MP1

The instructions here will tell how to run OP-TEE on one of the supported STM32MP1 boards.

Supported boards

Board Name Manufacturer Boot media Hardware Description
STM32MP135F-DK STMicroelectronics SDcard Wiki STM32MP135x-DK
STM32MP157A-DK1 STMicroelectronics SDcard Wiki STM32MP157x-DKx
STM32MP157D-DK1
STM32MP157C-DK2 STMicroelectronics SDcard Wiki STM32MP157x-DKx
STM32MP157F-DK2
STM32MP157C-EV1 STMicroelectronics SDCard (1) Wiki STM32MP157x-EV1
STM32MP157F-EV1

(1): STM32MP157x-EV1 boards also integrate an eMMC device, a NOR flash and a Nand flash the system can boot
on. OP-TEE distribution however only supports booting from the SDcard slot.

Build instructions

Follow the instructions at “Get and build the solution”.

Configuration switch PLATFORM can be used to specify the target device as listed in table below:

Board Name Build configuration directive
STM32MP135F-DK PLATFORM=stm32mp1-135F_DK
STM32MP157A-DK1 STM32MP157D-DK1 PLATFORM=stm32mp1-157A_DK1
STM32MP157C-DK2 STM32MP157F-DK2 PLATFORM=stm32mp1-157C_DK2
STM32MP157C-EV1 STM32MP157F-EV1 PLATFORM=stm32mp1-157C_EV1

When the build completes, generated image file sdcard.img can be found in the generated binary images directory
../out/bin/ from build root path. The images is a GPT multipartition image you can raw copy to the target SDcard
using a tool like dd.

A usual short fecth/build/load shell sequence is like the one below:

$ repo init -u https://github.com/OP-TEE/manifest.git -m stm32mp1.xml
$ repo sync
$ cd build
$ make toolchains
$ make PLATFORM=stm32mp1-157C_DK2 all
$ dd if=../out/bin/sdcard.img of=/dev/sdX conv=fdatasync status=progress
$ sgdisk -e /dev/sdX

Command sgdisk -e fixes the GPT backup data which location depends on storage device effective size.

146 Chapter 3. Build and run

https://www.st.com/en/evaluation-tools/stm32mp135f-dk.html
https://wiki.st.com/stm32mpu/wiki/STM32MP135x-DK_-_hardware_description
https://www.st.com/en/evaluation-tools/stm32mp157a-dk1.html
https://wiki.st.com/stm32mpu/wiki/STM32MP157x-DKx_-_hardware_description
https://www.st.com/en/evaluation-tools/stm32mp157d-dk1.html
https://www.st.com/en/evaluation-tools/stm32mp157c-dk2.html
https://wiki.st.com/stm32mpu/wiki/STM32MP157x-DKx_-_hardware_description
https://www.st.com/en/evaluation-tools/stm32mp157f-dk2.html
https://www.st.com/en/evaluation-tools/stm32mp157c-ev1.html
https://wiki.st.com/stm32mpu/wiki/STM32MP157x-EV1_-_hardware_description
https://www.st.com/en/evaluation-tools/stm32mp157f-ev1.html
https://www.st.com/en/evaluation-tools/stm32mp135f-dk.html

OP-TEE Documentation

3.2.13 Texas Instruments SoCs

The instructions here will tell how to run OP-TEE on Texas Instruments devices. Secure TI devices require a boot
image that is authenticated by ROM code to function. Without this, even JTAG remains locked. In order to create
a valid boot image for a secure device from TI, the initial public software image must be signed and combined with
various headers, certificates, and other binary images.

Information on the details on the complete boot image format can be obtained from Texas Instruments. The tools used
to generate boot images for secure devices are part of a secure development package (SECDEV) that can be downloaded
from:

http://www.ti.com/mysecuresoftware (login required)

The secure development package is access controlled due to NDA and export control restrictions. Access must be
requested and granted by TI before the package is viewable and downloadable. Contact TI, either online or by way of
a local TI representative, to request access.

Regular build

Start out by following the Get and build the solution as described in build. Stop before the section on flashing the
device, this is currently not supported automatically.

Booting the device

SD Card boot

Create two partitions on an SD card, boot of type FAT16 and rootfs of type EXT4. To prevent accidental data loss we
do not attempt this automatically (the RPI3 Build instructions use a similar SD card layout, you can refer to that page
for details).

Extract the generated rootfs to the rootfs partition

$ cd <SD card rootfs partition>
$ gunzip -cd <repo directory>/gen_rootfs/filesystem.cpio.gz | sudo cpio -idm

Add the bootloader to the boot partition

$ cd <SD card boot partition>
$ cp <repo directory>/u-boot/u-boot-spl_HS_MLO MLO
$ cp <repo directory>/u-boot/u-boot_HS.img u-boot.img

3.2.14 Zynq MPSoC

Instructions below show how to run OP-TEE on Zynq MPSoC based boards.

3.2. Device specific information 147

http://www.ti.com/mysecuresoftware

OP-TEE Documentation

Supported boards

Board Name Manufacturer Hardware Description
ZCU102 Xilinx/AMD ZCU102 Website
ZCU104 Xilinx/AMD ZCU104 Website
ZCU106 Xilinx/AMD ZCU106 Website
Ultra96 Avnet Ultra96 Website

Boot Firmware

Xilinx Zynq MPSoC device requires two firmware images, one to configure the device (First Stage Bootloader) and one
for runtime platform management (PMU Firmware). The scope of OP-TEE build Makefile does not cover buildling
these two firmware images therefore pre built binaries are required to generate a valid boot image. The pre built images
can be found in the following Xilinx wiki page.

Note: For Ultra96 board, the firmware binaries can be found in the Avnet website.

Build instructions

Follow the instructions at “Get and build the solution” page.

Configuration switch PLATFORM can be used to specify the target device as listed in table below:

Board Name Build configuration directive
ZCU102 PLATFORM=zynqmp-zcu102
ZCU104 PLATFORM=zynqmp-zcu104
ZCU106 PLATFORM=zynqmp-zcu106
Ultra96 PLATFORM=zynqmp-ultra96

An example of fetch and build commands is:

$ repo init -u https://github.com/OP-TEE/manifest.git -m zynqmp.xml
$ repo sync
$ cd build
$ make toolchains
$ make PLATFORM=zynqmp-zcu102 all

After completion of the buildling process, two new files will be generated within the zynqmp/ folder, BOOT.bin
and <platform-name>.ub. The first one is the boot image composed of the FSBL, PMU Firmware, ARM Trusted
Firmware, OP-TEE and U-Boot. The second one is a FIT image containing the Linux kernel, the device-tree blob and
the initramfs root file system.

Note: If the firmware image is not provided to the build script the boot image will not be generated.

148 Chapter 3. Build and run

https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://www.xilinx.com/products/boards-and-kits/zcu104.html
https://www.xilinx.com/products/boards-and-kits/zcu106.html
https://www.96boards.org/product/ultra96/
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842316/Linux+Prebuilt+Images

OP-TEE Documentation

Petalinux build instructions

OP-TEE build can be additionally integrated within Xilinx Petalinux tool for Embedded Linux development. As Petal-
inux is built on top of Yocto, the integration is performed through adding some exisiting recipes and few customizations.
Use the previous build Makefile based on Petalinux 2020.2 release as reference.

Booting the device

SD Card boot

Place both generated images in a single partition within the SD card. Boot the board in SD boot mode and stop the
U-Boot autoboot process once the prompt is displayed in the serial port.

Use the bellow commands to load the FIT image to RAM and boot.

ZynqMP> fatload mmc 0 0x30000000 zynqmp-zcu102.ub
27803872 bytes read in 1827 ms (14.5 MiB/s)
ZynqMP> bootm 0x30000000

3.3 AOSP

This page contains information that tells how to get OP-TEE up and running on HiKey devices (see HiKey 620, HiKey
960) together with AOSP.

Warning: The build used to be based on the latest OP-TEE release and used to be updated every quarter together
with the regular OP-TEE releases. However, the AOSP build hasn’t been updated since July 2021 and is no longer
maintained.

Note: We only use and support this static/stable configuration. If you try using it with the latest available AOSP, there
is a risk that both OP-TEE and other parts are not working as expected.

3.3.1 Prerequisites

• You should already be able to build AOSP for Hikey according to the official instructions. Note that the official
build is NOT part of the OP-TEE build. It is a separate and non-related build used only to verify and make sure
that your system has everything needed to build AOSP without any issues.

• Distro should have necessary packages installed, and the repo tool should be installed. Note that AOSP is built
with Java. Also make sure that the mtools package is installed, which is needed to make the hikey boot image.

• In addition, you will need the pre-requisites necessary to build optee-os.

After following the AOSP setup instructions, the following additional packages from main Prerequisites page are
needed. Please install them.

3.3. AOSP 149

https://github.com/OP-TEE/build/blob/3.14.0/zynqmp.mk
https://source.android.com/source/devices.html

OP-TEE Documentation

3.3.2 Build instructions

$ git clone https://github.com/linaro-swg/optee_android_manifest [-b <release_tag>]
release tags come in the form of X.Y.Z, e.g. 3.8.0
$ cd optee_android_manifest

HiKey620 - LeMaker 8GB

$./sync-p.sh
$./build-p.sh

HiKey620 - CircuitCo 4GB

$./sync-p.sh
$./build-p.sh -4g

HiKey960

$./sync-p-hikey960.sh
$./build-p-hikey960.sh

These steps MUST finish with no errors. For sync*.sh scripts, that means there must be no errors prior to the Sync
done! console output. For build*.sh scripts, that means there must be a #### build completed successfully
(MM:SS (mm:ss)) #### console output! If there are errors, then there is no point in trying to flash the device.

Warning:
• --force-sync is used which means you might lose your work so save often, save frequent, and save ac-

cordingly, especially before running sync-p.sh again!

• Attention! Do NOT use git clean with -x or -X or -e option in optee_android_manifest/, else risk
losing all files in the directory!!!

Hint: You can add the -squashfs option to build.sh option to make system.img size smaller, but this will make
/system read-only, so you won’t be able to push files to it.

Currently, only version P is supported. Other existing files are for internal development purposes ONLY and NOT
SUPPORTED!

3.3.3 Flashing the image

The instructions for flashing the image can be found in detail under device/linaro/hikey/installer/
hikey{960}/README in the tree.

1. Set jumpers/switches 1-2 and 3-4, and unset 5-6.

2. Reset the board. After that, invoke:

HiKey620

$ cp -a out/target/product/hikey/*.img device/linaro/hikey/installer/hikey/
$ sudo ./device/linaro/hikey/installer/hikey/flash-all.sh /dev/ttyUSBn

150 Chapter 3. Build and run

OP-TEE Documentation

HiKey960

$ cp -a out/target/product/hikey960/*.img device/linaro/hikey/installer/hikey960/
$ sudo ./device/linaro/hikey/installer/hikey960/flash-all.sh /dev/ttyUSBn

where the /dev/ttyUSBn device is the one that appears after rebooting with the 3-4 jumper set. Note that the device
only remains in this recovery mode for about 90 seconds. If you take too long to run the flash commands, it will need
to be reset again. After flashing, unset the 3-4 jumper again to boot normally.

3.3.4 Partial flashing

The last handful of lines in the flash-all.sh script flash various images. After modifying and rebuilding Android,
it is only necessary to flash boot, system, cache, vendor and userdata. If you aren’t modifying the kernel, boot is not
necessary, either.

3.3.5 Experimental prebuilts

Available at http://snapshots.linaro.org/android under android-hikey* directories. Note that these images do not
always work and are NOT SUPPORTED as well!

3.3.6 Running xtest

Do NOT try to run tee-supplicant as it has already been started automatically as a service! Once booted to the
command prompt, xtest can be run immediately from the console or an adb shell. For more details about running
OP-TEE, please see Run xtest at optee_test.

3.3.7 Running VTS Gtest unit for Gatekeeper and Keymaster (Optional)

On the device after going into the command prompt, run:

$ su
$./data/nativetest64/VtsHalGatekeeperV1_0TargetTest/VtsHalGatekeeperV1_0TargetTest
$./data/nativetest64/VtsHalKeymasterV3_0TargetTest/VtsHalKeymasterV3_0TargetTest

Note: These tests need to be run as root.

3.3.8 Enable adb over USB

Boot the device. On serial console:

$ su setprop sys.usb.configfs 1
$ stop adbd
$ start adbd

3.3. AOSP 151

http://snapshots.linaro.org/android

OP-TEE Documentation

3.3.9 Known issues

• If you don’t have a monitor or hdmi emulator (dummy plug) connected to the board, you’ll see constant errors
scrolling on the console. As a workaround, move android.hardware.graphics.composer@2.1-service.
rc out of /vendor/etc/init. Move it back in when working with a monitor again.

• Adb over USB currently doesn’t work on HiKey960. As a workaround, use adb over tcpip. See https://bugs.
96boards.org/show_bug.cgi?id=502 for details on how to connect. There are still some limitations however.
E.g. running adb shell or a second adb instance will break the current adb tcpip connection. This might
be due to unstable WiFi (there are periodic error messages like wlcore: WARNING corrupted packet in
RX: status: 0x1 len: 76) or just incompleteness of the generic HiKey960 builds under P.

3.4 Linux kernel TEE framework

3.5 OP-TEE gits

These are the gits considered as the main OP-TEE gits which together makes up the entire TEE solution.

3.5.1 build

Why this particular git? As it turns out it’s totally possible to put together everything on your own. You can build
all the individual components, os, client, xtest, Linux kernel, TF-A, TianoCore, QEMU, Buildroot etc and put all the
binaries at correct locations and write your own command lines, Makefiles, shell-scripts etc that will work nicely on
the devices you are interested in. If you know how to do that, fine, please go a head. But for newcomers it’s way to
much behind the scenes to be able to setup a working environment. Also, if you for some reason want to run something
in an automated way, then you need something else wrapping it up for you.

With this particular git built.git our goal is to simply to make it easy for newcomers to get started with OP-TEE using
the devices we’ve listed in this document.

git location

https://github.com/OP-TEE/build

Why repo?

We discussed alternatives, initially we started out with having a simple shell-script, that worked to start with, but after
getting more gits in use and support for more devices it started to be difficult to maintain. In the end we ended up
choosing between repo from the Google AOSP project and git submodules. No matter which you choose, there will
always be some person arguing that one is better than the other. For us we decided to use repo. Not directly for the
features itself from repo, but for the ability to simply work with different manifests containing both stable and non-
stable release. Using some tips and tricks you can also speed up setup time significantly. For day to day work with
commits, branches etc we tend to use git commands directly.

152 Chapter 3. Build and run

https://bugs.96boards.org/show_bug.cgi?id=502
https://bugs.96boards.org/show_bug.cgi?id=502
https://buildroot.org
https://github.com/OP-TEE/build
https://source.android.com/source/downloading.html
https://git-scm.com/book/en/v2/Git-Tools-Submodules

OP-TEE Documentation

Root filesystem

The rootfs in the builds that we cover here are as small as possible and is based on a stripped down Buildroot configu-
ration adding just enough in the rootfs such that one can:

• Boot OP-TEE.

• Run xtest with no regressions.

• Easily add additional developer tools like, strace, valgrind etc.

Note: As a consequence of enabling “just enough”, it is likely that non-UART based enviroments won’t work out of
the box. I.e., if you try to boot up an enviroment using HDMI and connect keyboards and other devices it is likely that
things will not work. To make them work, you probably need to rebuild Linux kernel with correct drivers/frameworks
enabled and in addition to that enable binaries/daemons in Buildroot that might be necessary (user space tools and
drivers).

How do I build using AOSP / OpenEmbedded?

For guides how to build AOSP, please refer to our AOSP page. For OpenEmbedded we have no guide ready.

Platforms supported by build.git

Below is a table showing the platforms supported by build.git. OP-TEE as such supports many more platforms. To find
out how to run OP-TEE on those, please reach out to the maintainer of that platform directly if you have build related
questions etc. Please see the MAINTAINERS file for contact information.

Platform Composite flag Publicly available?
AMD/Xilinx Versal ACAP VCK190 PLATFORM=versal Yes
ARM Juno Board PLATFORM=vexpress-juno Yes
ARM Foundation FVP PLATFORM=vexpress-fvp Yes
DeveloperBox PLATFORM=synquacer Yes
HiKey Kirin 620 PLATFORM=hikey Yes
HiKey 960 PLATFORM=hikey-hikey960 Yes
MediaTek MT8173 EVB Board (deprecated) PLATFORM=mediatek-mt8173 No
Poplar PLATFORM=poplar Yes
QEMU PLATFORM=vexpress-qemu_virt Yes
QEMUv8 PLATFORM=vexpress-qemu_armv8a Yes
Raspberry Pi 3 PLATFORM=rpi3 Yes
ROCK Pi 4 PLATFORM=rockchip-rk3399 Yes
STM32MP157A-DK1 PLATFORM=stm32mp1-157A_DK1 Yes
STM32MP157C-DK2 PLATFORM=stm32mp1-157C_DK2 Yes
STM32MP157C-EV1 PLATFORM=stm32mp1-157C_EV1 Yes
Texas Instruments DRA7xx PLATFORM=ti-dra7xx Yes
Texas Instruments AM57xx PLATFORM=ti-am57xx Yes
Texas Instruments AM43xx PLATFORM=ti-am43xx Yes

3.5. OP-TEE gits 153

https://buildroot.org
https://github.com/OP-TEE/optee_os/blob/master/MAINTAINERS
https://www.xilinx.com/products/boards-and-kits/vck190.html
http://www.arm.com/products/tools/development-boards/versatile-express/juno-arm-development-platform.php
http://www.arm.com/fvp
https://www.96boards.org/product/developerbox
https://www.96boards.org/products/hikey
https://www.96boards.org/product/hikey960
http://www.mediatek.com/en/products/mobile-communications/tablet/mt8173
https://www.96boards.org/product/poplar/
http://wiki.qemu.org/Main_Page
http://wiki.qemu.org/Main_Page
https://www.raspberrypi.org/products/raspberry-pi-3-model-b
https://wiki.radxa.com/Rockpi4
https://www.st.com/en/evaluation-tools/stm32mp157a-dk1.html
https://www.st.com/en/evaluation-tools/stm32mp157c-dk2.html
https://www.st.com/en/evaluation-tools/stm32mp157c-ev1.html
http://www.ti.com/product/DRA746
http://www.ti.com/product/AM5728
http://www.ti.com/product/AM4379

OP-TEE Documentation

Manifests

Current version

Here is a list of manifests for the devices currently supported in build.git. With these you will get a setup containing
the all necessary software components to run OP-TEE on the chosen device. Beware that this will run latest available
on OP-TEE gits meaning that if you re-sync then you will most likely get new commits. If you need a stable/tagged
version with non-moving gits, then please refer to the next section instead.

Target Manifest xml Device documentation
AM43xx am43xx.xml Texas Instruments SoCs
AM57xx am57xx.xml Texas Instruments SoCs
DeveloperBox synquacer.xml DeveloperBox
ARM Juno board juno.xml Juno
DRA7xx dra7xx.xml Texas Instruments SoCs
FVP fvp.xml FVP
HiKey 960 hikey960.xml HiKey 960
HiKey hikey.xml HiKey 620
Poplar Debian poplar.xml
QEMU default.xml QEMU v7
QEMUv8 qemu_v8.xml QEMU v8
Raspberry Pi 3 rpi3.xml Raspberry Pi 3
STM32MP1 stm32mp1.xml STM32MP1
VCK190 versal.xml AMD-Xilinx Versal ACAP VCK190

Stable releases

Starting from OP-TEE v3.1 you can check out stable releases by using the same manifests as for current version above,
but with the difference that you also need to specify a branch where the name corresponds to the release version. I.e.,
when we are doing releases we are creating a branch with a name corresponding to the release version. So, let’s for
example say that you want to checkout a stable OP-TEE v3.12 for Raspberry Pi 3, then you do like this instead of what
is mentioned further down in section “Step 3 - Get the source code” (note the -b 3.12.0):

Hint: If there is no strong need for an older version, then we always recommend to use the most recent release. I.e.,
in the example here we do say 3.12.0, but there may very well be more recent version when you are reading this. To
find out, please have a look at the “Release dates” page.

...
$ repo init -u https://github.com/OP-TEE/manifest.git -m rpi3.xml -b 3.12.0
...

154 Chapter 3. Build and run

OP-TEE Documentation

Stable releases prior to OP-TEE v3.1 (v1.0.0 to v3.0.0)

Before OP-TEE v3.1 we used to have separate xml-manifest files for the stable builds. If you for some reason need an
older stable release, please refer to “Build stable releases v1.0.0 to v3.0.0”.

Stable releases prior to OP-TEE v3.9 (3.1.0 to 3.8.0)

Due to a change in the Google repo tool, you might get an error when cloning OP-TEE repositories before version
3.9.0. In this case please refer to “Build stable releases 3.1.0 to 3.8.0”.

Get and build the solution

Below we will describe the general way of how to get the source, build the solution and how to run xtest on the device.
For device specific instructions, please see the links in the table in the “Current version” section.

Step 1 - Prerequisites

Install prerequisites according to the Prerequisites page.

Step 2 - Install Android repo

Note that here you don’t install a huge SDK, it’s simply a Python script that you download and put in your $PATH, that’s
it. Exactly how to “install” repo, can be found at the Google repo pages, so follow those instructions before continuing.

Step 3 - Get the source code

Choose the manifest corresponding to the platform you intend to use (see the table in section “Current version”.
For example, if you intend to use Raspberry Pi3, then at line 3 below, ${TARGET}.xml shall be rpi3.xml. The
<optee-project> is whatever location where you want to store the entire OP-TEE developer setup.

1 $ mkdir -p <optee-project>
2 $ cd <optee-project>
3 $ repo init -u https://github.com/OP-TEE/manifest.git -m ${TARGET}.xml [-b ${BRANCH}]
4 $ repo sync -j4 --no-clone-bundle

Hint: By referencing an existing and locally saved repo forest you can save lots of time. We are talking about doing
repo sync in 30 seconds instead of 15-30 minutes (see the Tips and Tricks section for more details).

3.5. OP-TEE gits 155

https://source.android.com/source/downloading.html

OP-TEE Documentation

Step 4 - Get the toolchains

In OP-TEE we’re using different toolchains for different targets (depends on ARMv7-A ARMv8-A 64/32bit solutions).
In any case start by downloading the toolchains by:

$ cd <optee-project>/build
$ make -j2 toolchains

Step 5 - Build the solution

We’ve configured our repo manifests, so that repo will always automatically symlink the Makefile to the correct device
specific makefile, that means that you simply start the build by running (still in <optee-project>/build)

$ make -j `nproc`

This step will also take some time, but you can speed up subsequent builds by enabling ccache (again see Tips and
Tricks).

Hint: If you’re having build issues, then you can pipe the entire build log to a file, which makes it easier to search
for the issue using a regular editor. In that case also avoid the -j flag so it’s easier to see in what order things are
happening. To create a build.log file do: $ make 2>&1 | tee build.log

Step 6 - Flash the device

On non-emulated solutions (this means that you shouldn’t do this step when you are running QEMU-v7/v8 and FVP),
you will need to flash the software in some way. We’ve tried to “hide” that under the following make target:

$ make flash

But, since some devices are trickier to flash than others, please see the Device specific information. See this just as a
general instruction.

Step 7 - Boot up the device

This is device specific (see Device specific information).

Step 8 - Load tee-supplicant

On most solutions tee-supplicant is already running (check by running $ ps aux | grep tee-supplicant) on
others not. If it’s not running, then start it by running:

$ tee-supplicant -d

Note: If you’ve built using our manifest you should not need to modprobe any OP-TEE/TEE kernel driver since it’s
built into the kernel in all our setups.

156 Chapter 3. Build and run

https://ccache.samba.org

OP-TEE Documentation

Step 9 - Run xtest

The entire xtest test suite has been deployed when you we’re making the builds in previous steps, i.e, in general there
is no need to copy any binaries manually. Everything has been put into the Root filesystem automatically. So, to run
xtest, you simply type:

$ xtest

If there are no regressions / issues found, xtest should end with something like this:

...
+---
23476 subtests of which 0 failed
67 test cases of which 0 failed
0 test case was skipped
TEE test application done!

Hint: For other ways to run xtest, please refer to the “Run xtest” page at optee_test.

Tips and Tricks

Reference existing project to speed up repo sync

Doing a repo init, repo sync from scratch can take a fair amount of time. The main reason for that is simply
because of the size of some of the gits we are using, like for the Linux kernel and EDK2. With repo you can reference
an existing forest and by doing so you can speed up repo sync to taking 30 seconds instead of 15-30 minutes. The way
to do this are as follows.

1. Start by setup a clean forest that you will not touch, in this example, let us call that optee-ref and put that under
for $HOME/devel/optee-ref. This step will take somewhere between 15- to 45 minutes, depending on your
connection speed to internet.

2. Then setup a cronjob (crontab -e) that does a repo sync in this folder particular folder once a night (that is
more than enough).

3. Now you should setup your actual tree which you are going to use as your working tree. The way to do this is
almost the same as stated in the instructions above (see the “Step 3 - Get the source code” section) , the only
difference is that you also reference the other local forest when running repo init, like this

$ repo init -u https://github.com/OP-TEE/manifest.git --partial-clone --reference
→˓$HOME/devel/optee-ref

4. The rest is the same above, but now it will only take less than a minute to clone a forest.

Normally ‘1’ and ‘2’ above is something you will only do once. Also if you ignore step ‘2’, then you will still get the
latest from official git trees, since repo will also check for updates that aren’t at the local reference.

3.5. OP-TEE gits 157

OP-TEE Documentation

Use ccache

ccache is a tool that caches build object-files etc locally on the disc and can speed up build time significantly in subse-
quent builds. On Debian-based systems (Ubuntu, Mint etc) you simply install it by running:

$ sudo apt-get install ccache

The makefiles in build.git are configured to automatically find and use ccache if ccache is installed on your system, so
other than having it installed you don’t have to think about anything.

3.5.2 Build stable releases v1.0.0 to v3.0.0

Before OP-TEE v3.1.0 we used to have separate xml-manifest files for the stable builds. If you for some reason need
such an older stable release, then you can use the xyz_stable.xml file corresponding to your device. The way to
init repo is almost the same as described above, the major difference is the name of manifest being referenced (-m
xyz_stable.xml) and that we are referring to a tag instead of a branch (-b refs/tags/MAJOR.MINOR.PATCH). So
as an example, if you need to setup the 2.1.0 stable release for HiKey, then you would do like this instead of what is
mentioned further down in section “Step 3 - Get the source code”.

...
repo init -u https://github.com/OP-TEE/manifest.git -m hikey_stable.xml -b refs/tags/2.1.
→˓0
...

Here is a list of targets and the names of the stable manifests files which were supported by older releases:

Target Stable manifest xml
AM43xx am43xx_stable.xml
AM57xx am57xx_stable.xml
ARM Juno board juno_stable.xml
DRA7xx dra7xx_stable.xml
FVP fvp_stable.xml
HiKey 960 hikey960_stable.xml
HiKey Debian hikey_debian_stable.xml
HiKey hikey_stable.xml
MTK8173 mt8173-evb_stable.xml
QEMU default_stable.xml
QEMUv8 qemu_v8_stable.xml
Raspberry Pi 3 rpi3_stable.xml

3.5.3 Build stable releases 3.1.0 to 3.8.0

If you have a recent enough version of the Google repo tool (>= 2.0.0) and follow the normal build procedure at
“Get and build the solution”, you will likely get an error during repo init with the following OP-TEE versions and
platforms:

• 3.1.0 to 3.5.0: qemu_v8.xml, rpi3.xml

• 3.6.0 to 3.8.0: default.xml (QEMU), qemu_v8.xml, rpi3.xml

The typical error message is:

158 Chapter 3. Build and run

https://ccache.samba.org

OP-TEE Documentation

$ repo init -u https://github.com/OP-TEE/manifest.git -m qemu_v8.xml -b 3.3.0
[...]
fatal: manifest 'qemu_v8.xml' not available
fatal: <linkfile> invalid "src": ../toolchains/aarch64/bin/aarch64-linux-gnu-gdb: bad␣
→˓component: ..

The workaround is to checkout repo version 1.13.9 manually:

$ repo init -u https://github.com/OP-TEE/manifest.git -m qemu_v8.xml -b 3.3.0
Above error occurs, ignore it
$ (cd .repo/repo; git checkout v1.13.9)
$ repo init -u https://github.com/OP-TEE/manifest.git -m qemu_v8.xml -b 3.3.0
Should not error out. Then proceed with 'repo sync' and build.

3.5.4 manifest

This page contains a couple of guidelines and rules that we want to try to follow when it comes to managing the
manifests.

git location

https://github.com/OP-TEE/manifest

Remotes

Since most of our projects can be found on GitHub, we are using that as the main remote. If you need to include other
remotes for some reason, then that is OK, but please double check of there is any maintained (and preferably official)
mirror for the project at GitHub before adding a new remote.

Sections

To have some kind of structure of the files, we have split them up in three sections, one for pure OP-TEE gits, one for
OP-TEE supporting gits found at linaro-swg and then a third, misc section where everything else can be found. I.e., a
template looks like this (this also includes the default remote for clarity):

<?xml version="1.0" encoding="UTF-8"?>
<manifest>

<remote name="github" fetch="https://github.com" />

<default remote="github" revision="master" />

<!-- OP-TEE gits -->
<!-- linaro-swg gits -->
<!-- Misc gits -->

</manifest>

3.5. OP-TEE gits 159

https://github.com/OP-TEE/manifest
https://github.com/linaro-swg

OP-TEE Documentation

Project XML elements

All <projects ... > lines should be on the format as shown below with the attributes in this order. The reason for
this is to have it uniformly done across all manifests and that it will make it easier when comparing various versions of
manifests with diff tools. All three attributes are mandatory. The only exception is revision which does not have to
be stated if it is master that we are tracking.

<project path="name_and_path_on_disk" name="upstream_name.git" revision="git_revsion" />

Alphabetic order

Within each of the three sections, all <project ... > lines shall be sorted in alphabetic order (this is again for making
it easier to diff manifests). The only expection here is build.git which uses the linkfile element. Having that at
the end makes it look cleaner.

Additional XML attributes

If you are using another remote than the default, then that should come after the revision attribute (this is true for
all attributes other than the path, name and revision).

Alignment of XML attributes

The three mandatory XML attributes path, name and revision should be column aligned. Alignment of additional
XML attributes are optional.

When to use clone-depth=”1”?

With clone-depth="1" you are telling repo and git that you only want a certain commit and not the entire git
log history. You can only use this under two conditions and that is when revision is either a branch or a tag.
Pure SHA-1's does not work and will even raise repo and git sync errors in some cases. So, the rules are, if
you use either revision="refs/tags/my_tag" or revision="refs/heads/my_branch", then you shall add
clone-depth="1" right after the revision attribute.

Spaces or tabs?

Only use spaces!

Example

Here is an example showing the basis for an OP-TEE manifest. The names are fictive etc, but it describes everything
said above.

<?xml version="1.0" encoding="UTF-8"?>
<manifest>

<remote name="github" fetch="https://github.com" />
<remote name="other" fetch="https://someotherlocation.com" />

<default remote="github" revision="master" />

(continues on next page)

160 Chapter 3. Build and run

OP-TEE Documentation

(continued from previous page)

<!-- OP-TEE gits -->
<project path="optee_abc" name="OP-TEE/optee_abc.git" />
<project path="optee_def" name="OP-TEE/optee_def.git" />

<!-- linaro-swg gits -->
<project path="lswg_abc" name="linaro-swg/lswg-abc.git" revision=

→˓"aaaabbbbcccc93e64c2fdd6ae8b0be14a8c45719" />
<project path="lswg_def" name="linaro-swg/lswg-def.git" revision=

→˓"ddddeeeeffff83e64c2fdd6ae8b0be14a8c45719" />

<!-- Misc gits -->
<project path="my_other" name="my_other.git" revision="refs/tags/

→˓2017.11" clone-depth="1" remote="other" />
</manifest>

3.5.5 optee_client

optee_client git contains the source code for the TEE client library in Linux. This component provides the TEE Client
API as defined by the GlobalPlatform TEE standard. It is distributed under the BSD 2-clause open source license.

In this git there are two main targets/binaries to build. There is libteec.so, which is the library that contains that
API for communication with the Trusted OS. Then there is tee-supplicant which is a daemon serving the Trusted
OS in secure world with miscellaneous features, such as file system access.

git location

https://github.com/OP-TEE/optee_client

License

The software is provided under the BSD 2-Clause license.

Build instructions

You can build the code in this git only or build it as part of the entire system, i.e. as a part of a full OP-TEE developer
setup. For the latter, please refer to instructions at the build page. For standalone builds we currently support building
with both CMake as well as with regular GNU Makefiles.

Configure the toolchain

First step is to download and configure a toolchain, see the Toolchains page for instructions.

3.5. OP-TEE gits 161

https://github.com/OP-TEE/optee_client
http://opensource.org/licenses/BSD-2-Clause

OP-TEE Documentation

Clone optee_client

$ git clone https://github.com/OP-TEE/optee_client
$ cd optee_client

Build using CMake

$ mkdir build
$ cd build
$ cmake -DCMAKE_C_COMPILER=arm-linux-gnueabihf-gcc ..
$ make

Note: This example uses the 32-bit toolchain (arm-linux-gnueabihf-), the same works using the 64-bit toolchain
(aarch64-linux-gnu-).

After this step the compiled binaries can be sound in sub-folders of build. If you have a need
or preference to install the binaries at some specific location, then on the cmake line above add
-DCMAKE_INSTALL_PREFIX=<my-install-path> as an additional argument. With that you can then run
make install and the binaries etc will be copied to the location that you gave as an argument. In this example
/tmp/optee_client.

$ cmake -DCMAKE_C_COMPILER=arm-linux-gnueabihf-gcc -DCMAKE_INSTALL_PREFIX=/tmp/optee_
→˓client ..
$ make
$ make install

Build using GNU Make

The Makefile is configured to use arm-linux-gnueabihf- by default.

$ make

Note: For a 64-bit builds (or any other toolchain) you will need to use CROSS_COMPILE.

$ make CROSS_COMPILE=aarch64-linux-gnu-

After this step the compiled binaries can be found in the sub-folder out.

162 Chapter 3. Build and run

OP-TEE Documentation

Compiler flags

To be able to see all commands when building you could build using following flags:

GNU Make

$ make V=1

CMake

$ make VERBOSE=1

Coding standards

See Coding standards.

3.5.6 optee_docs

This is the Git where all official OP-TEE documentation resides and this is what you are reading right now. Here
we will give instructions on how to write and build the documentation as well as give some guidelines on what to
do and not to do. Note that the documentation is written for Sphinx. So, even though GitHub for example renders
*.rst files somewhat OK, that is still not the preferred way to read and view the documentation. Instead head over to
https://optee.readthedocs.io where the final output is stored and nicely rendered using Sphinx.

git location

https://github.com/OP-TEE/optee_docs

Install Sphinx

Before doing anything else, first install Sphinx and the dependencies.

$ sudo apt install graphviz python3-sphinx python3-sphinx-rtd-theme

Build optee_docs

$ git clone https://github.com/OP-TEE/optee_docs
$ cd optee_docs
$ make html

After this step all documentation should have been built and you can open <optee_docs>/_build/html/index.
html in your browser to see the result and browse the documentation.

Hint: By using a Linux tool called entr. You can automatically rebuild the pages your are working with. First get
the package $ sudo apt install entr, then:

$ cd <optee_docs>
$ find . -name "*.rst" | entr -c make html

3.5. OP-TEE gits 163

http://www.sphinx-doc.org
https://optee.readthedocs.io
https://github.com/OP-TEE/optee_docs

OP-TEE Documentation

With this, entrwill automatically rebuild the documentation everytime you make change and save a file. Which means
you only have to save the file in your editor and refresh the browser page to see the changes locally.

General guidelines

Linking

Internal links

Internally within a Sphinx project you can link various pages by referring to a keyword specified right above a section,
chapter or subsection. This means that you don’t have to make hardlinks to certain files. Instead Sphinx will just figure
out where it is for you. Example I have to files, file compiler.rst and toolchain.rst. They could look like this:

compiler.rst example

1 ########
2 Compiler
3 ########
4 Bla bla bla
5

6 .. _compiler_flags:
7

8 Compiler Flags
9 **************

toolchain.rst example

1 ########
2 Toolchain
3 ########
4 Bla bla bla to see find out more about various flags, please refer
5 :ref:`compiler_flags`.

What we can see in the example, is that on line 5 in toolchain.rst we refer to the keyword in compiler.rst by
using :ref:`compiler_flags`. This would render a direct link to that section in compiler.rst.

General recommendation for OP-TEE internal linking

• Things about general things doesn’t have to be prefixed with the “document name”.

• Things that are specific should be prefixed with the “document name”.

Example: the “Contact” section is generic so it’s there is no need for prefix. But for example HiKey 620 build instruc-
tions are specific to HiKey 620, so there we shall prefix keyword for internal linking.

164 Chapter 3. Build and run

OP-TEE Documentation

rst files

The rst files should have descriptive names, but even more important is where you decide to put the files. Even though
it’s not a problem to move files around, we have to remember that we tend to quite often give links to documentation
from at GitHub, emails etc. If we move files, there is a high likelihood that they will become dead links in the future
(404’s). So think twice before adding a new file or moving an existing file.

Sections, chapters

We have adopted the Sphinx recommended way of using sections, chapters, subsections etc, those are:

• # with overline, for parts

• * with overline, for chapters

• =, for sections

• -, for subsections

• ^, for subsubsections

• “, for paragraphs

3.5.7 optee_examples

This document describes the sample applications that are included in the OP-TEE, that aim to showcase specific func-
tionality and use cases.

For sake of simplicity, all OP-TEE example test application are prefixed with optee_example_. All of them works as
standalone host and Trusted Application and can be found in separate directories.

git location

https://github.com/linaro-swg/optee_examples

License

The software is provided under the BSD 2-Clause license.

Build instructions

You can build the code in this git only or build it as part of the entire system, i.e. as a part of a full OP-TEE developer
setup. For the latter, please refer to instructions at the build page. For standalone builds we currently support building
with both CMake as well as with regular GNU Makefiles. However, since the both the host and the Trusted Applications
have dependencies to files in optee_client (libteec.so and headers) as well as optee_os (TA-devkit), one must first build
those and then refer to various files. Below we will show to to build the hello_world example for Armv7-A using regular
GNU Make.

3.5. OP-TEE gits 165

https://github.com/linaro-swg/optee_examples
http://opensource.org/licenses/BSD-2-Clause

OP-TEE Documentation

Configure the toolchain

First step is to download and configure a toolchain, see the Toolchains page for instructions.

Build the dependencies

Then you must build optee_os as well as optee_client first. Build instructions for them can be found on their respective
pages.

Clone optee_examples

$ git clone https://github.com/linaro-swg/optee_examples.git

Build using GNU Make

Host application

$ cd optee_examples/hello_world/host
$ make \

CROSS_COMPILE=arm-linux-gnueabihf- \
TEEC_EXPORT=<optee_client>/out/export/usr \
--no-builtin-variables

With this you end up with a binary optee_example_hello_world in the host folder where you did the build.

Trusted Application

$ cd optee_examples/hello_world/ta
$ make \

CROSS_COMPILE=arm-linux-gnueabihf- \
PLATFORM=vexpress-qemu_virt \
TA_DEV_KIT_DIR=<optee_os>/out/arm/export-ta_arm32

With this you end up with a files named uuid.{ta,elf,dmp,map} etc in the ta folder where you did the build.

Note: For a 64-bit builds (or any other toolchain) you will need to change CROSS_COMPILE (and also use a PLATFORM
corresponding to an Armv8-A configuration).

166 Chapter 3. Build and run

OP-TEE Documentation

Coding standards

See Coding standards.

Example applications

acipher

Application name UUID
optee_example_acipher a734eed9-d6a1-4244-aa50-7c99719e7b7b

Generates an RSA key pair of specified size and encrypts a supplied string with it using the GlobalPlatform TEE Internal
Core API.

aes

Application name UUID
optee_example_aes 5dbac793-f574-4871-8ad3-04331ec17f24

Runs an AES encryption and decryption from a TA using the GlobalPlatform TEE Internal Core API. Non secure test
application provides the key, initial vector and ciphered data.

hello_world

Application name UUID
optee_example_hello_world 8aaaf200-2450-11e4-abe2-0002a5d5c51b

This is a very simple Trusted Application to answer a hello command and incrementing an integer value.

hotp

Application name UUID
optee_example_hotp 484d4143-2d53-4841-3120-4a6f636b6542

HMAC based One Time Password in OP-TEE
HMAC based One Time Passwords or shortly just ‘HOTP’ has been around for many years and was initially defined
in RFC4226 back in 2005. Since then it has been a popular choice for doing two factor authentication. With the
implementation here we are showing how one could leverage OP-TEE for generating such HMAC based One Time
Passwords in a secure manner.

3.5. OP-TEE gits 167

https://en.wikipedia.org/wiki/Hash-based_message_authentication_code
https://www.ietf.org/rfc/rfc4226.txt
https://en.wikipedia.org/wiki/Multi-factor_authentication

OP-TEE Documentation

Client (OP-TEE) / Server solution

The most common way of using HOTP is in a client/server setup, where the client needs to authenticate itself to be
able to get access to some resources on the server. In those cases the server will ask for an One Time Password, the
client will generate that and send it over to the server and if the server is OK with the password it will grant access to
the client.

Technically how it is working is that the server and the client needs to agree on shared key (’K’) and also start from
the same counter (’C’). How that is done in practice is another topic, but RFC4226 has some discussion about it. You
should at least have a secure channel between the client and the server when sharing the key, but even better would be
if you could establish a secure channel all the way down to the TEE (currently we have TCP/UDP support in OP-TEE,
but not TLS).

When both the server and the client knows about and use the same key and counter they can start doing client authen-
tication using HOTP. In short what happens is that both the client and the server computes the same HOTP and the
server compares the result of both computations (which should be the same to grant access). How that could work can
be seen in the sequence diagram below.

In the current implementation we have OP-TEE acting as a client and the server is a remote service running somewhere
else. There is no server implemented, but that should be pretty easy to add in a real scenario. The important thing here
is to be able to register the shared key in the TEE and to get HOTP values from the TEE on request.

Since the current implementation works as a client we do not need to think about implementing the look-ahead syn-
chronization window (’s’) nor do we have to think about adding throttling (which prevents/slows down brute force
attacks).

Sequence diagram - Client / Server

Client / Server (OP-TEE)?

Even though the current implementation works as a HOTP client, there is nothing saying that the implementation cannot
be updated to also work as the validating server. One could for example have a simple device (a [security token] only
generating one time passwords) and use the TEE as a validating service to open up other secure services.

random

Application name UUID
optee_example_random b6c53aba-9669-4668-a7f2-205629d00f86

Generates a random UUID using capabilities of TEE API (TEE_GenerateRandom()).

168 Chapter 3. Build and run

https://www.ietf.org/rfc/rfc4226.txt

OP-TEE Documentation

3.5. OP-TEE gits 169

OP-TEE Documentation

secure_storage

Application name UUID
optee_example_secure_storage f4e750bb-1437-4fbf-8785-8d3580c34994

A Trusted Application to read/write raw data into the OP-TEE secure storage using the GlobalPlatform TEE Internal
Core API.

Further reading

Some additional information about how to write and compile Trusted Applications can be found at the Trusted Appli-
cations page.

3.5.8 optee_os

git location

https://github.com/OP-TEE/optee_os

License

The TEE core of optee_os is provided under the BSD 2-Clause license. But there are also other software such as libraries
included in optee_os. This “other” software will have different licenses that are compatible with BSD 2-Clause (i.e.,
non-contaminating licenses unlike GPL-v2 for example).

Build instructions

You can build the code in this git only or build it as part of the entire system, i.e. as a part of a full OP-TEE developer
setup. For the latter, please refer to instructions at the build page. For standalone builds optee_os uses only regular
GNU Makefiles (i.e. no CMake support here unlike the other OP-TEE gits).

Configure the toolchain

First step is to download and configure a toolchain, see the Toolchains page for instructions.

Clone optee_os

$ git clone https://github.com/OP-TEE/optee_os
$ cd optee_os

170 Chapter 3. Build and run

https://github.com/OP-TEE/optee_os
http://opensource.org/licenses/BSD-2-Clause

OP-TEE Documentation

Build using GNU Make

Since optee_os supports many devices and configurations it’s impossible to give a examples to all variants. But below is
how you for example would build for QEMU running Armv7-A (AArch32), with debugging enabled and the benchmark
framework disabled and will put all built files in a folder name out/arm in the root of the git.

1 $ make \
2 CFG_TEE_BENCHMARK=n \
3 CFG_TEE_CORE_LOG_LEVEL=3 \
4 CROSS_COMPILE=arm-linux-gnueabihf- \
5 CROSS_COMPILE_core=arm-linux-gnueabihf- \
6 CROSS_COMPILE_ta_arm32=arm-linux-gnueabihf- \
7 CROSS_COMPILE_ta_arm64=aarch64-linux-gnu- \
8 DEBUG=1 \
9 O=out/arm \

10 PLATFORM=vexpress-qemu_virt

The same for an QEMU Armv8-A (AArch64) would look like this:

1 $ make \
2 CFG_ARM64_core=y \
3 CFG_TEE_BENCHMARK=n \
4 CFG_TEE_CORE_LOG_LEVEL=3 \
5 CROSS_COMPILE=aarch64-linux-gnu- \
6 CROSS_COMPILE_core=aarch64-linux-gnu- \
7 CROSS_COMPILE_ta_arm32=arm-linux-gnueabihf- \
8 CROSS_COMPILE_ta_arm64=aarch64-linux-gnu- \
9 DEBUG=1 \

10 O=out/arm \
11 PLATFORM=vexpress-qemu_armv8a

Hint: To be able to see all commands when building you could build with:

$ make V=1

Build using LLVM/clang

optee_os can be compiled using llvm/clang. Start by downloading the toolchain (see LLVM / Clang). After that you
can compile by running.

Note: On line one you need to adjust the path so it matches the version of clang you are using.

1 $ export PATH=<optee-project>/toolchains/clang-v9.0.1/bin:$PATH
2 $ make COMPILER=clang

3.5. OP-TEE gits 171

OP-TEE Documentation

Coding standards

See Coding standards.

Build system

The build system in optee_os consists of a main Makefile in the root of the project together with sub.mk files in all
source directories. In addition, some supporting files are used to recursively process all sub.mk files and generate the
build rules.

Name Description
core/core.mk Included from Makefile to build the TEE Core
ta/ta.mk Included from Makefile to create the TA devkit
mk/compile.mk Create rules to make objects from source files
mk/lib.mk Create rules to make a libraries (.a)
mk/subdir.mk Process sub.mk files recursively
mk/config.mk Global configuration variable
core/arch/$(ARCH)/$(ARCH).mk Arch-specific compiler flags
core/arch/$(ARCH)/
plat-$(PLATFORM)/conf.mk

Platform-specific compiler flags and configuration variables

core/arch/$(ARCH)/
plat-$(PLATFORM)/link.mk

Make recipes to link the TEE Core

ta/arch/arm/link.mk Make recipes to link Trusted Applications
ta/mk/ta_dev_kit.mk Main Makefile to be included when building Trusted Applications
mk/checkconf.mk Utility functions to manipulate configuration variables and generate

a C header file
sub.mk List source files and define compiler flags

make is always invoked from the top-level directory; there is no recursive invocation of make itself.

Choosing the build target

The target architecture, platform and build directory may be selected by setting environment or make variables
(VAR=value make or make VAR=value).

ARCH - CPU architecture

$(ARCH) is the CPU architecture to be built. Currently, the only supported value is arm for 32-bit or 64-bit Armv7-A
or Armv8-A. Please note that contrary to the Linux kernel, $(ARCH) should not be set to arm64 for 64-bit builds. The
ARCH variable does not need to be set explicitly before building either, because the proper instruction set is selected
from the $(PLATFORM) value. For platforms that support both 32-bit and 64-bit builds, CFG_ARM64_core=y should
be set to select 64-bit and not set (or set to n) to select 32-bit.

Architecture-specific source code belongs to sub-directories that follow the arch/$(ARCH) pattern, such as: core/
arch/arm, lib/libutee/arch/arm and so on.

172 Chapter 3. Build and run

OP-TEE Documentation

CROSS_COMPILE

$(CROSS_COMPILE) is the prefix used to invoke the (32-bit) cross-compiler toolchain. The default value is
arm-linux-gnueabihf-. This is the variable you want to change in case you want to use ccache to speed you recom-
pilations:

$ make CROSS_COMPILE="ccache arm-linux-gnueabihf-"

If the build includes a mix of 32-bit and 64-bit code, for instance if you set CFG_ARM64_core=y to build
a 64-bit secure kernel, then two different toolchains are used, that are controlled by $(CROSS_COMPILE32)
and $(CROSS_COMPILE64). The default value of $(CROSS_COMPILE32) is the value of CROSS_COMPILE,
which defaults to arm-linux-gnueabihf- as mentioned above. The default value of $(CROSS_COMPILE64) is
aarch64-linux-gnu-. Examples:

For this example, select HiKey which supports both 32- and 64-bit builds
$ export PLATFORM=hikey

1. Build everything 32-bit
$ make

2. Same as (1.) but override the toolchain
$ make CROSS_COMPILE="ccache arm-linux-gnueabihf-"

3. Same as (2.)
$ make CROSS_COMPILE32="ccache arm-linux-gnueabihf-"

4. Select 64-bit secure 'core' (and therefore both 32- and 64-bit
Trusted Application libraries)
$ make CFG_ARM64_core=y

5. Same as (4.) but override the toolchains
$ make CFG_ARM64_core=y \

CROSS_COMPILE32="ccache arm-linux-gnueabihf-" \
CROSS_COMPILE64="ccache aarch64-linux-gnu-"

PLATFORM / PLATFORM_FLAVOR

A platform is a family of closely related hardware configurations. A platform flavor is a variant of such configurations.
When used together they define the target hardware on which OP-TEE will be run.

For instance PLATFORM=stm PLATFORM_FLAVOR=b2260 will build for the ST Microelectronics 96boards/cannes2
board, while PLATFORM=vexpress PLATFORM_FLAVOR=qemu_virt will generate code for a para-virtualized Arm
Versatile Express board running on QEMU.

For convenience, the flavor may be appended to the platform name with a dash, so make PLATFORM=stm-b2260 is a
shortcut for make PLATFORM=stm PLATFORM_FLAVOR=b2260. Note that in both cases the value of $(PLATFORM) is
stm in the makefiles.

Platform-specific source code belongs to core/arch/$(ARCH)/plat-$(PLATFORM), for instance: core/arch/arm/
plat-vexpress or core/arch/arm/plat-stm.

3.5. OP-TEE gits 173

https://ccache.samba.org/

OP-TEE Documentation

O - output directory

All output files go into a platform-specific build directory, which is by default out/$(ARCH)-plat-$(PLATFORM).

The output directory has basically the same structure as the source tree. For instance, assuming ARCH=arm
PLATFORM=stm, core/kernel/panic.c will compile into out/arm-plat-stm/core/kernel/panic.o.

However, some libraries are compiled several times: once or twice for user mode, and once for kernel mode. This is
because they may be used by the TEE Core as well as by the Trusted Applications. As a result, the lib source directory
gives two or three build directories: ta_arm{32,64}-lib and core-lib.

The output directory also has an export-ta_arm{32,64} directory, which contains:

• All the files needed to build Trusted Applications.

– In lib/: libutee.a (the GlobalPlatform Internal API), libutils.a (which implements a part of the
standard C library), and other libraries which provide additional APIs.

– In include/: header files for the above libraries

– In mk/: ta_dev_kit.mk, which is a Make include file with suitable rules to build a TA, and its dependen-
cies

– scripts/sign.py: a Python script used by ta_dev_kit.mk to sign TAs.

– In src: user_ta_header.c: source file to add a suitable header to the Trusted Application (as expected
by the loader code in the TEE Core).

• Some files needed to build host applications (using the Client API), under export-ta_arm{32,64}/
host_include.

Finally, the build directory contains the auto-generated configuration file for the TEE Core: $(O)/include/
generated/conf.h (see below).

Configuration and flags

The following variables are defined in core/arch/$(ARCH)/$(ARCH).mk:

• $(core-platform-aflags), $(core-platform-cflags) and $(core-platform-cppflags) are added to
the assembler / C compiler / preprocessor flags for all source files compiled for TEE Core including the kernel
versions of libraries such as libutils.a.

• $(ta_arm{32,64}-platform-aflags), $(ta_arm{32,64}-platform-cflags) and $(ta_arm{32,
64}-platform-cppflags) are added to the assembler / C compiler / preprocessor flags when building the
user-mode libraries (libutee.a, libutils.a) or Trusted Applications.

The following variables are defined in core/arch/$(ARCH)/plat-$(PLATFORM)/conf.mk:

• If $(arm{32,64}-platform-cflags), $(arm{32,64}-platform-aflags) and $(arm{32,
64}-platform-cppflags) are defined their content will be added to $(*-platform-*flags) when they
are are initialized in core/arch/$(ARCH)/$(ARCH).mk as described above.

• $(core-platform-subdirs) is the list of the subdirectories that are added to the TEE Core.

174 Chapter 3. Build and run

OP-TEE Documentation

Linker scripts

The file core/arch/$(ARCH)/plat-$(PLATFORM)/link.mk contains the rules to link the TEE Core and perform
any related tasks, such as running objdump to produce a dump file. link.mk adds files to the all: target.

Source files

Each directory that contains source files has a file called sub.mk. This makefile defines the source files that should be
included in the build, as well as any subdirectories that should be processed, too. For example:

core/arch/arm/sm/sub.mk
srcs-y += sm_asm.S
srcs-y += sm.c

core/sub.mk
subdirs-y += kernel
subdirs-y += mm
subdirs-y += tee
subdirs-y += drivers

The -y suffix is meant to facilitate conditional compilation. See section Configuration variables below.

srcs-y and subdirs-y are often not used together in the same sub.mk, because source files are usually alone in leaf
directories. But this is not a hard rule.

In addition to source files, sub.mk may define compiler flags, include directories and/or configuration variables as
explained below.

Compiler flags

Default compiler flags are defined in mk/compile.mk. Note that platform-specific flags must not appear in this file
which is common to all platforms.

To add flags for a given source file, you may use the following variables in sub.mk:

• cflags-<filename>-y for C files (*.c)

• aflags-<filename>-y for assembler files (*.S)

• cppflags-<filename>-y for both C and assembler

For instance:

core/lib/libtomcrypt/src/pk/dh/sub.mk
srcs-y += dh.c
cflags-dh.c-y := -Wno-unused-variable

Compiler flags may also be removed, as follows:

lib/libutils/isoc/newlib/sub.mk
srcs-y += memmove.c
cflags-remove-memmove.c-y += -Wcast-align

Some variables apply to libraries only (that is, when using mk/lib.mk) and affect all the source files that belong to the
library: cppflags-lib-y and cflags-lib-y.

3.5. OP-TEE gits 175

OP-TEE Documentation

Include directories

Include directories may be added to global-incdirs-y, in which case they will be accessible from all the source
files and will be copied to export-ta_arm{32,64}/include and export-ta_arm{32,64}/host_include.

When sub.mk is used to build a library, incdirs-lib-y may receive additional directories that will be used for that
library only.

Configuration variables

Some features may be enabled, disabled or otherwise controlled at compile time through makefile variables. Default
values are normally provided in makefiles with the ?= operator so that their value may be easily overridden by envi-
ronment variables. For instance:

PLATFORM ?= stm
PLATFORM_FLAVOR ?= default

Some global configuration variables are defined in mk/config.mk, but others may be defined in sub.mk when then
pertain to a specific library for instance.

Variables with the CFG_ prefix are treated in a special way: their value is automatically reflected in the generated
header file $(out-dir)/include/generated/conf.h, after all the included makefiles have been processed. conf.
h is automatically included by the preprocessor when a source file is built.

Depending on their value, variables may be considered either boolean or non-boolean, which affects how they are
translated into conf.h.

Boolean configuration variables

When a configuration variable controls the presence or absence of a feature, y means enabled, while anything else
means disabled. In particular, a variable that is undefined or is defined but has an empty value is also disabled. For
example, the following commands are equivalent and would disable feature CFG_CRYPTO_GCM:

$ make CFG_CRYPTO_GCM=n

$ make CFG_CRYPTO_GCM=

$ CFG_CRYPTO_GCM=n make

$ export CFG_CRYPTO_GCM=n
$ make

When a configuration variable is introduced, the proper way to enable it by default is to write CFG_XXX ?= y. If it
should be default disabled instead, use CFG_XXX ?= n rather than leaving the variable undefined, and add a description
in a comment.

In general, common settings belong in mk/config.mk while platform-specific ones should go in core/arch/
$(arch)/plat-$(platform)/conf.mk (there are exceptions, for instance crypto settings have their own crypto.mk
files). Both places may be used in case a platform needs to set a default value that is different from the one that is set
in the global configuration file. For example:

176 Chapter 3. Build and run

OP-TEE Documentation

CFG_FOO is enabled by default except for PLATFORM=xyz
Override with "make CFG_FOO=y" is allowed

In core/arch/$(arch)/plat-xyz/conf.mk
CFG_FOO ?= n

In mk/config.mk
CFG_FOO ?= y

CFG_FOO is enabled by default except for PLATFORM=xyz that requires
CFG_FOO disabled
Override with "make CFG_FOO=y" is NOT allowed

In core/arch/$(arch)/plat-xyz/conf.mk
$(call force,CFG_FOO,n)

In mk/config.mk
CFG_FOO ?= y

y and n can be swapped to achieve the opposite scenario.

Configuration variables can easily be used in sub.mk to trigger conditional compilation:

core/lib/libtomcrypt/src/encauth/sub.mk
subdirs-$(CFG_CRYPTO_CCM) += ccm
subdirs-$(CFG_CRYPTO_GCM) += gcm

It is not recommended to set CFG_ values in sub.mk.

When a configuration variable is enabled (y), <generated/conf.h> contains a macro with the same name as the
variable and the value 1. If it is disabled, however, no macro definition is output. This allows the C code to use
constructs like:

/* core/lib/libtomcrypt/src/tee_ltc_provider.c */

/* ... */

#if defined(CFG_CRYPTO_GCM)
struct tee_gcm_state {

gcm_state ctx; /* the gcm state as defined by LTC */
size_t tag_len; /* tag length */

};
#endif

3.5. OP-TEE gits 177

OP-TEE Documentation

Non-boolean configuration variables

Configuration variables that are not recognized as booleans are simply output unchanged into <generated/conf.h>. For
instance:

$ make CFG_TEE_CORE_LOG_LEVEL=4

/* out/arm-plat-vexpress/include/generated/conf.h */

#define CFG_TEE_CORE_LOG_LEVEL 4 /* '4' */

The ‘force’ macro

Some platforms may require specific values for some of their configuration variables. For instance, the number of
CPU cores in a system is fixed so the value of CFG_TEE_CORE_NB_CORE should generally not be changed. Or some
feature may not be supported by the hardware, in which case the corresponding configuration variable should always
be disabled.

In such cases, the force macro should be used. It sets the variable to the specified value while reporting about any
conflicting value that may have been set previously, either via a previous assignment in the makefiles or via the command
line or environment variables. For example:

$(call force,CFG_TEE_CORE_NB_CORE,8)
$(call force,CFG_ARM64_core,n)
$(call force,CFG_ARM_GICV3,y)

$ make -j10 PLATFORM=hikey CFG_TEE_CORE_NB_CORE=4
core/arch/arm/plat-hikey/conf.mk:5: *** CFG_TEE_CORE_NB_CORE is set to '4' (from command␣
→˓line) but its value must be '8'. Stop.

There are only two ways. . .

Given what has been explained above, there are only two valid ways to set a CFG_ variable in a .mk file: either with
?= if the value is a default that may be changed at build time, or with $(call force,...) if there is only one
acceptable value. Using = or := in particular is not correct because they allow overrides on the command line (make
CFG_FOO=foo) but not from the environment (CFG_FOO=foo make).

Configuration dependencies

Some combinations of configuration variables may not be valid. This should be dealt with by custom checks in make-
files. mk/checkconf.h provides functions to help detect and deal with such situations.

178 Chapter 3. Build and run

OP-TEE Documentation

Import branches

This section is more specifically intended for maintainers.

The optee_os repository contains branches with the import/ prefix, which we call import branches below. This section
describes their purpose and how they are used.

Import branches are meant to help import external libraries into the optee_os repository and maintain them:

• Import means copy source files from a given upstream version of the library and commit them locally (typically
under optee_os/lib or optee_os/core/lib), along with OP-TEE specific changes (build and configuration
files for instance)

• Maintain means carry local bug fixes or improvements that did not make their way upstream, and periodically
upgrade the library by importing changes from upstream.

Import branches have the version of the imported library in their names. For example: import/mbedtls-2.6.1. They
are forked from master. They record the history of all changes made for OP-TEE to a library for a given library version.
For example, the import branch for Mbed TLS 2.6.1 illustrates how the Mbed TLS library was initially imported and
later modified:

$ BRANCH=github/import/mbedtls-2.6.1
$ BASE=`git merge-base master $BRANCH`
$ git log --oneline --no-merges $BASE..$BRANCH
8ff963a6 (github/import/mbedtls-2.6.1) mbedtls: fix memory leak in mpi_miller_rabin()
213cce52 libmedtls: mpi_miller_rabin: increase count limit
f934e291 mbedtls: add mbedtls_mpi_init_static()
782fddd1 libmbedtls: add mbedtls_mpi_init_mempool()
33873834 libmbedtls: make mbedtls_mpi_mont*() available
e0186224 libmbedtls: refine mbedtls license header
215609ae mbedtls: configure mbedtls to reach for config
6916dcd9 mbedtls: remove default include/mbedtls/config.h
b60fc42a Import mbedtls-2.6.1

Commit b60fc42a imports the library under lib/libmbedtls/mbedtls with no modification to the code (not the
whole library is imported however, since some files are not needed they are deleted as mentioned in the commit de-
scription). Then a couple of adjustments are made in commits 6916dcd9 and 215609ae in order to be able to build with
optee_os. At this point the initial import is done and subsequent commits are local improvements or bug fixes made
later on.

The initial import (commits b60fc42a, 6916dcd9 and 215609ae) is merged into master as a “squashed” commit to
preserve bisectability – in other words, so that no commit in master breaks the build:

$ git show --quiet 817466cb
commit 817466cb476de705a8e3dabe1ef165fe27a18c2f
Author: Jens Wiklander <jens.wiklander@linaro.org>
Date: Tue May 22 13:49:31 2018 +0200

Squashed commit importing mbedtls-2.6.1 source

Squash merging branch import/mbedtls-2.6.1

215609ae4d8c ("mbedtls: configure mbedtls to reach for config")
6916dcd9b9cd ("mbedtls: remove default include/mbedtls/config.h")
b60fc42a5cd5 ("Import mbedtls-2.6.1")

(continues on next page)

3.5. OP-TEE gits 179

OP-TEE Documentation

(continued from previous page)

Acked-by: Joakim Bech <joakim.bech@linaro.org>
Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>

Later changes are reviewed and merged into master normally, and are also recorded on top of the import branch via
pull requests against the import branch. Consider for example the two following commits, one is in the master branch
and the other is applied on top of the import branch.

18c5148d357e ("mbedtls: add mbedtls_mpi_init_static()") # In master
f934e2913b7b ("mbedtls: add mbedtls_mpi_init_static()") # In import/mbedtls-2.6.1

The master branch is occasionally merged into the import branches. Otherwise, some patches cherry-picked from
master would not apply. Note that it is a “normal” merge (not a rebase), so the commits that are on master can easily
be filtered out (git log --oneline --first-parent import/...).

When it is time to upgrade a library, a new import branch is created from master, for example: import/mbedtls-2.
16.0. A pull request is created against this branch with the following commits:

• The first commit deletes the “old” version of the library and imports the new upstream version.

• The subsequent commits are cherry-picked from the previous import branch and adjusted as needed. These
commits are effectively “rebased” onto the new library.

• Build files are updated if needed.

Here is the history of the import/mbedtls-2.16.0 branch, for comparison with the initial import:

$ BRANCH=github/import/mbedtls-2.16.0
$ BASE=`git merge-base master $BRANCH`
$ git log --oneline --no-merges $BASE..$BRANCH
68df6eb0 libmbedtls: mbedtls_mpi_exp_mod(): reduce stack usage
f58facc6 libutee: increase MPI mempool size
be040a3e libmbedtls: preserve mempool usage on reinit
ae499f6a libmbedtls: mbedtls_mpi_exp_mod() initialize W
b95a6c5d libmbedtls: fix no CRT issue
ac34734a libmbedtls: add interfaces in mbedtls for context memory operation
9ee2a92d libmbedtls: compile new files added with 2.16.0
9b0818d4 mbedtls: fix memory leak in mpi_miller_rabin()
2d6644ee libmedtls: mpi_miller_rabin: increase count limit
d831db4c libmbedtls: add mbedtls_mpi_init_mempool()
df0f4886 libmbedtls: make mbedtls_mpi_mont*() available
7b079206 libmbedtls: refine mbedtls license header
2616e2d9 mbedtls: configure mbedtls to reach for config
d686ab1c mbedtls: remove default include/mbedtls/config.h
50a57cfa Import mbedtls-2.16.0
8bfc3de4 libutee: lessen dependency on mbedtls internals

Note that the first commit 8bfc3de4 (“libutee: lessen dependency on mbedtls internals”) can be ignored, it was applied
to master in anticipation of the 2.16.0 upgrade but the import/mbedtls-2.16.0 was forked before.

The upgrade from 2.6.1 to 2.16.0 is made of all the commits up to and including commit 9ee2a92d (“libmbedtls:
compile new files added with 2.16.0”):

• Commit 50a57cfa (“Import mbedtls-2.16.0”) deletes the “old” files and library imports the new ones.

• Commits d686ab1c..9b0818d4 are cherry-picked from the previous import branch.

• Commit 9ee2a92d (“libmbedtls: compile new files added with 2.16.0”) adapts the build files to the new version.

180 Chapter 3. Build and run

OP-TEE Documentation

The master branch contains a squashed equivalent of the above:

$ git show --quiet 3d3b0591
commit 3d3b05918ec9052ba13de82fbcaba204766eb636
Author: Jens Wiklander <jens.wiklander@linaro.org>
Date: Wed Mar 20 15:30:29 2019 +0100

Squashed commit upgrading to mbedtls-2.16.0

Squash merging branch import/mbedtls-2.16.0

9ee2a92de51f ("libmbedtls: compile new files added with 2.16.0")
9b0818d48d29 ("mbedtls: fix memory leak in mpi_miller_rabin()")
2d6644ee0bbe ("libmedtls: mpi_miller_rabin: increase count limit")
d831db4c238a ("libmbedtls: add mbedtls_mpi_init_mempool()")
df0f4886b663 ("libmbedtls: make mbedtls_mpi_mont*() available")
7b0792062b65 ("libmbedtls: refine mbedtls license header")
2616e2d9709f ("mbedtls: configure mbedtls to reach for config")
d686ab1c51b7 ("mbedtls: remove default include/mbedtls/config.h")
50a57cfac892 ("Import mbedtls-2.16.0")

Acked-by: Jerome Forissier <jerome.forissier@linaro.org>
Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>

Subsequent commits in the import/mbedtls-2.16.0 branch are modifications that happened later in master as a
result of OP-TEE development.

3.5.9 optee_test

The optee_test.git contains the source code for the TEE sanity test suite in Linux using the ARM(R) TrustZone(R)
technology. It is typically referred to as xtest. By default there are several thousands of tests when running the code
that is in the git only. However, it is also possible to incorporate tests coming from GlobalPlatform (see Extended test
(GlobalPlatform tests)). We typically refer to these to as:

• Standard tests: These are the test that are included in optee_test. They are free and open source.

• Extended tests: Those are the tests that are written directly by GlobalPlatform. They are not open source and
they are not freely available (it’s free to members of GlobalPlatform and can otherwise be purchased directly
from GlobalPlatform).

3.5. OP-TEE gits 181

OP-TEE Documentation

git location

https://github.com/OP-TEE/optee_test

License

The client applications (optee_test/host/*) are provided under the GPL-2.0 license and the user Trusted Applica-
tions (optee_test/ta/*) are provided under the BSD 2-Clause.

Build instructions

At the moment you can only build the code in this git as part of the entire system, i.e. as a part of a full OP-TEE
developer setup. So, please refer to the instructions at the build page to learn how to build a full OP-TEE developer
setup. Building purely standalone is not possible (*) because:

• the host code (xtest) have dependencies to the optee_client (it links against libteec, openssl and uses various
headers)

• the Trusted Applications have dependencies to the TA-devkit built by optee_os.

Note: (*) It is of course possible to build this without a full OP-TEE developer setup, but it will require a lot of
tweaking with paths, flags etc. I.e., one would need to do exactly the same as the full OP-TEE developer setup does
under the hood.

Extended test (GlobalPlatform tests)

One can purchase the GlobalPlatform Compliance Test suite which is GlobalPlatforms own test suite for testing TEE
implementations adhering to the GlobalPlatforms interfaces.

Hint: Members of GlobalPlatform can download this for free at the GlobalPlatform members pages. This something
that the OP-TEE project cannot help with. If you need help with that, please reach out to the liason at GlobalPlatform.

xtest can be extended/patched to include the GlobalPlatform Compliance Test suite. This can be done by downloading
the GlobalPlatform Compliance Test suite (a *.7z file) and add an additional compiler flag (GP_PACKAGE) to the make
invocation line, example:

$ make GP_PACKAGE=/tmp/TEE_Initial_Configuration-Test_Suite_v2_0_0_2-2017_06_09.7z

Note: Starting from OP-TEE v3.11.0, OP-TEE was updated to support the
TEE_Initial_Configuration-Test_Suite_v2_0_0_2-2017_06_09.7z version from the GlobalPlatform
Compliance Test suite. That is the only supported version after OP-TEE v3.11.0. If you need to run an earlier version
of the GlobalPlatform Compliance Test suite then you need to follow the instructions in the documentation for OP-TEE
v3.9.0 and earlier.

182 Chapter 3. Build and run

https://github.com/OP-TEE/optee_test
http://opensource.org/licenses/GPL-2.0
http://opensource.org/licenses/BSD-2-Clause
https://store.globalplatform.org/product/tee-initial-configuration-test-suite-with-excluded-tests-list-v2-0-0-2/

OP-TEE Documentation

Run xtest

It’s important to understand that you run xtest on the device itself, i.e., this is nothing that you run on the host machine.

xtest - default

The most simple case is to run the default configuration:

$ xtest

xtest - all

This runs all tests within the standard xtest. Using the -l parameter you can tweak the amount of tests you will run.
15 is the most and 0 is the least.

$ xtest -l 15

xtest - single

To run a single test case, just specify its numbers, for example:

$ xtest 1001

xtest - family

To run a family (1xxx, 2xxx and so on), just specify its number prefixed with an underscore. This for example will run
the 1xxx family.

$ xtest _1

xtest - benchmark

To run the benchmark tests, run xtest like this:

$ xtest -t benchmark

Here it is also possible to state a number for a certain benchmark test, for example:

$ xtest -t benchmark 2001

3.5. OP-TEE gits 183

OP-TEE Documentation

xtest - regression

To run the regression tests, run xtest like this:

$ xtest -t regression

Here it is also possible to state a number for a certain regression test, for example:

$ xtest -t regression 2004

xtest - aes-perf

This is benchmark test for AES and you run it like this:

$ xtest --aes-perf

Note: There is an individual help for --aes-perf, i.e.

$ xtest --aes-perf -h

xtest - sha-perf

This is benchmark test for SHA-xxx and you run it like this:

$ xtest --sha-perf

Note: There is an individual help for --sha-perf, i.e.

$ xtest --sha-perf -h

There you can select other SHA algorithms etc.

Coding standards

See Coding standards.

The optee_os repository is required to run the checks. It’s location may be passed using the OPTEE_OS_PATH envi-
ronment variable:

export OPTEE_OS_PATH=/path/to/optee_os

In case OPTEE_OS_PATH is unset or empty, the dispatcher script will default to ../optee_os.

184 Chapter 3. Build and run

OP-TEE Documentation

3.6 Toolchains

OP-TEE uses both 32bit as well as 64bit toolchains and it is even possible to mix them in some configurations. In
theory you should be able to compile OP-TEE with the Arm toolchains that are coming with your Linux distribution.
But instead of using those directly, we instead download the toolchains directly from Arm.

3.6.1 Download/install

We propose two ways to download the toolchains, both will put the toolchains under the same path(s).

Direct download

Go the Arm GCC download page and download the “AArch32 target with soft float (arm-linux-gnueabi)” for 32bit
builds and the “AArch64 GNU/Linux target (aarch64-linux-gnu)” for 64bit builds. When the downloads have finished,
you will untar them to a location that you later on will export to your $PATH. Here is an example

$ mkdir -p $HOME/toolchains
$ cd $HOME/toolchains

Download 32bit toolchain
$ wget https://developer.arm.com/-/media/Files/downloads/gnu-a/8.2-2019.01/gcc-arm-8.2-
→˓2019.01-x86_64-arm-linux-gnueabi.tar.xz
$ mkdir aarch32
$ tar xf gcc-arm-8.2-2019.01-x86_64-arm-linux-gnueabi.tar.xz -C aarch32 --strip-
→˓components=1

Download 64bit toolchain
$ wget https://developer.arm.com/-/media/Files/downloads/gnu-a/8.2-2019.01/gcc-arm-8.2-
→˓2019.01-x86_64-aarch64-linux-gnu.tar.xz
$ mkdir aarch64
$ tar xf gcc-arm-8.2-2019.01-x86_64-aarch64-linux-gnu.tar.xz -C aarch64 --strip-
→˓components=1

Using build.git

As an alternative, you can let build.git download them for you, but this of course involves getting a git that you might
not otherwise use.

$ cd $HOME
$ git clone https://github.com/OP-TEE/build.git
$ cd build
$ make -f toolchain.mk -j2

3.6. Toolchains 185

https://developer.arm.com/open-source/gnu-toolchain/gnu-a/downloads

OP-TEE Documentation

3.6.2 Export PATH

If you have downloaded the toolchains as described above, you should have them at $HOME/toolchains/{aarch32/
aarch64}, so now we just need to export the paths and then you are ready to starting compiling OP-TEE components.

$ export PATH=$PATH:$HOME/toolchains/aarch32/bin:$HOME/toolchains/aarch64/bin

3.6.3 LLVM / Clang

It’s possible to also compile optee_os.git using llvm/clang. To do that, you can download and extract Clang from the
GitHub release page. You’ll need an x86_64 cross-compiler capable of generating aarch64 and armv7a code and the
compiler-rt libraries for these architectures (libclang_rt.*.a).

Clang is configured to be able to cross-compile to all the supported architectures by default (see <clang path>/bin/llc
–version) which is great, but compiler-rt is included only for the host architecture. Therefore you need to combine
several packages into one. Please refer to this get_clang.sh script for details on creating a llvm/clang toolchain ready
to be used.

Using build.git

As an alternative, you can let build.git download them for you, but this of course involves getting a git that you might
not otherwise use.

$ cd $HOME
$ git clone https://github.com/OP-TEE/build.git
$ cd build
$ make -f toolchain.mk clang-toolchains

The above instructions will download and install Clang in $HOME/clang-9.0.1.

You can also get the toolchain using your package manager or alternatively build it yourself, but these alternative
methods risk being incomplete. For example, the Ubuntu clang package does not install the needed ld.lld package.
The package also does not contain the cross-compiled compiler-rt libraries. Building by yourself is hard for the same
reason, i.e. no cross-compiled compiler-rt libraries are generated.

3.7 Trusted Applications

This document tells how to implement a Trusted Application for OP-TEE, using OP-TEE’s so called TA-devkit to both
build and sign the Trusted Application binary. In this document, a Trusted Application running in the OP-TEE os is
referred to as a TA. Note that in the default setup a private test key is distributed along with the optee_os source is used
for signing Trusted Applications. See TASign for more details, including offline signing of TAs.

186 Chapter 3. Build and run

https://github.com/OP-TEE/build/blob/master/get_clang.sh

OP-TEE Documentation

3.7.1 TA Mandatory files

The Makefile for a Trusted Application must be written to rely on OP-TEE TA-devkit resources in order to successfully
build the target application. TA-devkit is built when one builds optee_os.

To build a TA, one must provide:

• Makefile, a make file that should set some configuration variables and include the TA-devkit make file.

• sub.mk, a make file that lists the sources to build (local source files, subdirectories to parse, source file specific
build directives).

• user_ta_header_defines.h, a specific ANSI-C header file to define most of the TA properties.

• An implementation of at least the TA entry points, as extern functions: TA_CreateEntryPoint(),
TA_DestroyEntryPoint(), TA_OpenSessionEntryPoint(), TA_CloseSessionEntryPoint(),
TA_InvokeCommandEntryPoint()

TA file layout example

As an example, hello_world looks like this:

hello_world/
...
ta

Makefile BINARY=<uuid>
Android.mk Android way to invoke the Makefile
sub.mk srcs-y += hello_world_ta.c
include

hello_world_ta.h Header exported to non-secure: TA commands API
hello_world_ta.c Implementation of TA entry points
user_ta_header_defines.h TA_UUID, TA_FLAGS, TA_DATA/STACK_SIZE, ...

3.7.2 TA Makefile Basics

Required variables

The main TA-devkit make file is located in optee_os at ta/mk/ta_dev_kit.mk. The make file supports make targets
such as all and clean to build a TA or a library and clean the built objects.

The make file expects a couple of configuration variables:

TA_DEV_KIT_DIR
Base directory of the TA-devkit. Used by the TA-devkit itself to locate its tools.

BINARY and LIBNAME
These are exclusive, meaning that you cannot use both at the same time. If building a TA, BINARY shall provide
the TA filename used to load the TA. The built and signed TA binary file will be named ${BINARY}.ta. In
native OP-TEE, it is the TA UUID, used by tee-supplicant to identify TAs. If one is building a static library (that
will be later linked by a TA), then LIBNAME shall provide the name of the library. The generated library binary
file will be named lib${LIBNAME}.a

CROSS_COMPILE and CROSS_COMPILE32
Cross compiler for the TA or the library source files. CROSS_COMPILE32 is optional. It allows to target AArch32
builds on AArch64 capable systems. On AArch32 systems, CROSS_COMPILE32 defaults to CROSS_COMPILE.

3.7. Trusted Applications 187

OP-TEE Documentation

Optional variables

Some optional configuration variables can be supported, for example:

O
Base directory for build objects filetree. If not set, TA-devkit defaults to ./out from the TA source tree base
directory.

Example Makefile

A typical Makefile for a TA looks something like this

Append specific configuration to the C source build (here log=info)
The UUID for the Trusted Application
BINARY=8aaaf200-2450-11e4-abe2-0002a5d5c51b

Source the TA-devkit make file
include $(TA_DEV_KIT_DIR)/mk/ta_dev_kit.mk

sub.mk directives

The make file expects that current directory contains a file sub.mk that is the entry point for listing the source files to
build and other specific build directives. Here are a couple of examples of directives one can implement in a sub.mk
make file:

Adds /hello_world_ta.c from current directory to the list of the source
file to build and link.
srcs-y += hello_world_ta.c

Includes path **./include/** from the current directory to the include
path.
global-incdirs-y += include/

Adds directive -Wno-strict-prototypes only to the file hello_world_ta.c
cflags-hello_world_ta.c-y += -Wno-strict-prototypes

Removes directive -Wno-strict-prototypes from the build directives for
hello_world_ta.c only.
cflags-remove-hello_world_ta.c-y += -Wno-strict-prototypes

Adds the static library foo to the list of the linker directive -lfoo.
libnames += foo

Adds the directory path to the libraries pathes list. Archive file
libfoo.a is expected in this directory.
libdirs += path/to/libfoo/install/directory

Adds the static library binary to the TA build dependencies.
libdeps += path/to/greatlib/libgreatlib.a

188 Chapter 3. Build and run

OP-TEE Documentation

3.7.3 Android Build Environment

OP-TEE’s TA-devkit supports building in an Android build environment. One can write an Android.mk file for the
TA (stored side by side with the Makefile). Android’s build system will parse the Android.mk file for the TA which
in turn will parse a TA-devkit Android make file to locate TA build resources. Then the Android build will execute a
make command to built the TA through its generic Makefile file.

A typical Android.mk file for a TA looks like this (Android.mk for hello_world is used as an example here).

Define base path for the TA sources filetree
LOCAL_PATH := $(call my-dir)

Define the module name as the signed TA binary filename.
local_module := 8aaaf200-2450-11e4-abe2-0002a5d5c51b.ta

Include the devkit Android make script
include $(OPTEE_OS_DIR)/mk/aosp_optee.mk

3.7.4 TA Mandatory Entry Points

A TA must implement a couple of mandatory entry points, these are:

TEE_Result TA_CreateEntryPoint(void)
{

/* Allocate some resources, init something, ... */
...

/* Return with a status */
return TEE_SUCCESS;

}

void TA_DestroyEntryPoint(void)
{

/* Release resources if required before TA destruction */
...

}

TEE_Result TA_OpenSessionEntryPoint(uint32_t ptype,
TEE_Param param[4],
void **session_id_ptr)

{
/* Check client identity, and alloc/init some session resources if any */
...

/* Return with a status */
return TEE_SUCCESS;

}

void TA_CloseSessionEntryPoint(void *sess_ptr)
{

/* check client and handle session resource release, if any */
...

}
(continues on next page)

3.7. Trusted Applications 189

OP-TEE Documentation

(continued from previous page)

TEE_Result TA_InvokeCommandEntryPoint(void *session_id,
uint32_t command_id,
uint32_t parameters_type,
TEE_Param parameters[4])

{
/* Decode the command and process execution of the target service */
...

/* Return with a status */
return TEE_SUCCESS;

}

3.7.5 TA Properties

Trusted Application properties shall be defined in a header file named user_ta_header_defines.h, which should
contain:

• TA_UUID defines the TA uuid value

• TA_FLAGS define some of the TA properties

• TA_STACK_SIZE defines the RAM size to be reserved for TA stack

• TA_DATA_SIZE defines the RAM size to be reserved for TA heap (TEE_Malloc() pool)

Refer to TA Properties to understand how to configure these macros.

Hint: UUIDs can be generated using python

python -c 'import uuid; print(uuid.uuid4())'

or in most Linux systems using either

cat /proc/sys/kernel/random/uuid # Linux only
uuidgen # available from the util-linux package in most distributions

Example of a property header file

#ifndef USER_TA_HEADER_DEFINES_H
#define USER_TA_HEADER_DEFINES_H

#define TA_UUID
{ 0x8aaaf200, 0x2450, 0x11e4, \

{ 0xab, 0xe2, 0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b} }

#define TA_FLAGS (TA_FLAG_EXEC_DDR | \
TA_FLAG_SINGLE_INSTANCE | \
TA_FLAG_MULTI_SESSION)

#define TA_STACK_SIZE (2 * 1024)
(continues on next page)

190 Chapter 3. Build and run

OP-TEE Documentation

(continued from previous page)

#define TA_DATA_SIZE (32 * 1024)

#define TA_CURRENT_TA_EXT_PROPERTIES \
{ "gp.ta.description", USER_TA_PROP_TYPE_STRING, "Foo TA for some purpose." }, \
{ "gp.ta.version", USER_TA_PROP_TYPE_U32, &(const uint32_t){ 0x0100 } }

#endif /* USER_TA_HEADER_DEFINES_H */

Note: It is recommended to use the TA_CURRENT_TA_EXT_PROPERTIES as above to define extra properties of the TA.

Note: Generating a fresh UUID with suitable formatting for the header file can be done using:

python -c "import uuid; u=uuid.uuid4(); print(u); \
n = [', 0x'] * 11; \
n[::2] = ['{:12x}'.format(u.node)[i:i + 2] for i in range(0, 12, 2)]; \
print('\n' + '#define TA_UUID\n\t{ ' + \

'0x{:08x}'.format(u.time_low) + ', ' + \
'0x{:04x}'.format(u.time_mid) + ', ' + \
'0x{:04x}'.format(u.time_hi_version) + ', \x5c\n\t\t{ ' + \
'0x{:02x}'.format(u.clock_seq_hi_variant) + ', ' + \
'0x{:02x}'.format(u.clock_seq_low) + ', ' + \
'0x' + ''.join(n) + '} }')"

3.7.6 Checking TA parameters

GlobalPlatforms TEE Client APIs TEEC_InvokeCommand() and TEE_OpenSession() allow clients to invoke
a TA with some invocation parameters: values or references to memory buffers. It is mandatory that TA’s
verify the parameters types before using the parameters themselves. For this a TA can rely on the macro
TEE_PARAM_TYPE_GET(param_type, param_index) to get the type of a parameter and check its value according
to the expected parameter.

For example, if a TA expects that command ID 0 comes with params[0] being a input value, params[1] being a
output value, and params[2] being a in/out memory reference (buffer), then the TA should implemented the following
sequence:

TEE_Result handle_command_0(void *session, uint32_t cmd_id,
uint32_t param_types, TEE_Param params[4])

{
if ((TEE_PARAM_TYPE_GET(param_types, 0) != TEE_PARAM_TYPE_VALUE_IN) ||

(TEE_PARAM_TYPE_GET(param_types, 1) != TEE_PARAM_TYPE_VALUE_OUT) ||
(TEE_PARAM_TYPE_GET(param_types, 2) != TEE_PARAM_TYPE_MEMREF_INOUT) ||
(TEE_PARAM_TYPE_GET(param_types, 3) != TEE_PARAM_TYPE_NONE)) {
return TEE_ERROR_BAD_PARAMETERS

}

/* process command */
...

}
(continues on next page)

3.7. Trusted Applications 191

OP-TEE Documentation

(continued from previous page)

TEE_Result TA_InvokeCommandEntryPoint(void *session, uint32_t command_id,
uint32_t param_types, TEE_Param params[4])

{
switch (command_id) {
case 0:

return handle_command_0(session, param_types, params);

default:
return TEE_ERROR_NOT_SUPPORTED;

}
}

3.7.7 Identifying TA’s client

The GP TEE specification is designed to ensure that TEE sessions are reliable once created. A TA instance can identify
its client login method when a session is opened. A TA can use the client login credentials to establish or reject the
session. A TA can get its client identity from property "gpd.client.identity" with the TEE Internal Core API
function TEE_GetPropertyAsIdentity(():

TEE_Result TA_OpenSessionEntryPoint(uint32_t __unused param_types,
TEE_Param __unused params[4],
void **tee_session)

{
TEE_Identity identity = { };
TEE_Result res = TEE_SUCCESS;

res = TEE_GetPropertyAsIdentity(TEE_PROPSET_CURRENT_CLIENT,
"gpd.client.identity", &identity);

if (res)
return res;

switch (identity.login) {
case TEE_LOGIN_PUBLIC:

return login_public(&identity.uuid, tee_session);
case TEE_LOGIN_USER:

return login_user(&identity.uuid, tee_session);
case TEE_LOGIN_GROUP:

return login_group(&identity.uuid, tee_session);
case TEE_LOGIN_REE_KERNEL:

return login_kernel(&identity.uuid, tee_session);
case TEE_LOGIN_TRUSTED_APP:

return login_ta(&identity.uuid, tee_session);
default:

return TEE_ERROR_ACCESS_DENIED;
}

}

The value of the UUID found in identity.uuid depends on the login method:

• When the client is a TA, identity.login is TEE_LOGIN_TRUSTED_APP and identity.uuid is the client TA
UUID;

192 Chapter 3. Build and run

OP-TEE Documentation

• When the non-secure client uses TEE_LOGIN_PUBLIC or TEE_LOGIN_REE_KERNEL method, the UUID is not
used. By convention, Linux kernel and U-Boot both set nil UUID (all zeroes).

• When the non-secure client uses TEE_LOGIN_USER or TEE_LOGIN_GROUP method, the UUID is generated
from the UUIDv5 namespace derivation of a user ID tag ("uid=%x") or a group ID tag ("gid=%x") in
tee_client_uuid_ns namespace (below). The derivation is performed by the Linux kernel that verifies that
the client’s UID/GID is genuine, refer to tee_session_calc_client_uuid().

static const uuid_t tee_client_uuid_ns = UUID_INIT(0x58ac9ca0, 0x2086, 0x4683,
0xa1, 0xb8, 0xec, 0x4b,
0xc0, 0x8e, 0x01, 0xb6);

3.7.8 Signing of TAs

All REE Filesystem Trusted Applications need to be signed. The signature is verified by optee_os upon loading of the
TA. Within the optee_os source is a directory keys. The public part of keys/default_ta.pem will be compiled
into the optee_os binary and the signature of each TA will be verified against this key upon loading. Currently keys/
default_ta.pem must contain an RSA key.

Warning: optee_os comes with a default private key in its source to facilitate easy development, testing, debug-
ging and QA. Never deploy an optee_os binary with this key in production. Instead replace this key as soon as
possible with a public key and keep the private part of the key offline, preferably on an HSM.

Note: Currently only a single key for signing TAs is supported by optee_os.

TAs are signed using the sign_encrypt.py script referenced from ta/mk/ta_dev_kit.mk in optee_os. Its default
behaviour is to sign a compiled TA binary and attach the signature to form a complete TA for deployment. For offline
signing, a three-step process is required: In a first step a digest of the compiled binary has to be generated, in the second
step this digest is signed offline using the private key and finally in the third step the binary and its signature are stitched
together into the full TA.

Offline Signing of TAs

There are two types of TAs that can be signed offline. The in-tree TAs, which come with the OP-TEE OS (for example
the pkcs11 TA) and are generated during the compilation of the TA DEV KIT. The second type are any external TAs
coming from the user. In both cases however, the signing process is the same.

Offline signing is done with the following sequence of steps:

0. (Preparation) Generate a 2048 or 4096 bit RSA key for signing in a secure environment and extract the public key.
For example

openssl genrsa -out rsa2048.pem 2048
openssl rsa -in rsa2048.pem -pubout -out rsa2048_pub.pem

1. Build the OP-TEE OS with the variable TA_PUBLIC_KEY set to the public key generated above

TA_PUBLIC_KEY=/path/to/public_key.pem make all

The build script will do two things:

• It will embed the TA_PUBLIC_KEY key into the OP-TEE core image, which will be used to

3.7. Trusted Applications 193

https://elixir.bootlin.com/linux/latest/A/ident/tee_session_calc_client_uuid

OP-TEE Documentation

authenticate the TAs.

• It will generate .stripped.elf files of the in-tree TAs and sign them with the dummy key
pointed to by TA_SIGN_KEY, thus creating .ta files. Note that the generated .ta files are
not to be used as they are not compatible with the public key embedded into the OP-TEE core image.

2. Build any external TA. Same as with the in-tree TAs, the building procedure can use the dummy key pointed to by
TA_SIGN_KEY, however they are not to be used due to the incompatibility reasons mentioned in the paragraph above.

There are now two ways to generate the final .ta files. Either re-sign the .ta files with a customized sign_encrypt.
py script (left to the user to implement) or stitch the .stripped.elf files and their signatures together (explained in
steps 3-5).

Export the previously generated custom keypair and the UUID of the TA. In this example the UUID of OP-TEE’s
pkcs11 in-tree TA is used.

export TA_SIGN_KEY=rsa2048.pem
export TA_PUBLIC_KEY=rsa2048_pub.pem
export UUID=fd02c9da-306c-48c7-a49c-bbd827ae86ee

3. Manually generate a digest of the generated .stripped.elf files using

sign_encrypt.py digest --key $TA_PUBLIC_KEY --uuid $UUID \
--elf $UUID.stripped.elf --dig $UUID.dig

Note: It may be necessary to make use of the --ta-version argument here in some cases, e.g when building
Widevine’s oemcrypto. Check the make output of optee-os or the particular TAs and see if the version differs.

4. Sign this digest offline, for example with OpenSSL

base64 --decode $UUID.dig | \
openssl pkeyutl -sign -inkey $TA_SIGN_KEY \

-pkeyopt digest:sha256 -pkeyopt rsa_padding_mode:pss \
-pkeyopt rsa_pss_saltlen:digest -pkeyopt rsa_mgf1_md:sha256 | \

base64 > $UUID.sig

or using a Nitrokey HSM (assuming a working OpenSSL configuration for the PKCS11 engine is present)

base64 -d $UUID.dig | \
openssl pkeyutl -engine pkcs11 -keyform engine \

-sign -inkey "pkcs11:token=<my access token>;type=cert;object=<key label> or id=<key␣
→˓id>" \

-pkeyopt digest:sha256 -pkeyopt rsa_padding_mode:pss \
-pkeyopt rsa_pss_saltlen:digest \
-pkeyopt rsa_mgf1_md:sha256 | \

base64 > $UUID.sig

When using an HSM, the public key must be extracted and set as TA_PUBLIC_KEY. TA_SIGN_KEY doesn’t need to be
set in this case, since it is stored in the HSM module.

5. Manually stitch the TA and signature together

sign_encrypt.py stitch --key $TA_PUBLIC_KEY --uuid $UUID \
--elf $UUID.stripped.elf --sig $UUID.sig --out $UUID.ta

194 Chapter 3. Build and run

OP-TEE Documentation

Note: If the --ta-version flag was used in step 3., it needs to be used here as well.

By default, the UUID is taken as the base file name for all files. When signing directly inside the optee-os repository
the $UUID.sig, UUID.dig and $UUID.ta arguments can be omitted. They were merely provided in this example for
completeness. Consult sign_encrypt.py --help for a full list of options and parameters.

3.8 StandAloneMM

StandAloneMM is a PE/COFF binary produced by EDK2. For Arm platforms we can compile and use it, in combination
with OP-TEE to store EFI variables in an RPMB partition of our eMMC.

3.8.1 EDK2 Build instructions

$ git clone https://github.com/tianocore/edk2.git
$ git clone https://github.com/tianocore/edk2-platforms.git
$ cd edk2
$ git submodule init && git submodule update --init --recursive
$ cd ..
$ export WORKSPACE=$(pwd)
$ export PACKAGES_PATH=$WORKSPACE/edk2:$WORKSPACE/edk2-platforms
$ export ACTIVE_PLATFORM="Platform/StandaloneMm/PlatformStandaloneMmPkg/
→˓PlatformStandaloneMmRpmb.dsc"
$ export GCC5_AARCH64_PREFIX=aarch64-linux-gnu-
$ source edk2/edksetup.sh
$ make -C edk2/BaseTools
$ build -p $ACTIVE_PLATFORM -b RELEASE -a AARCH64 -t GCC5 -n `nproc`

3.8.2 OP-TEE Build instructions

$ git clone https://github.com/OP-TEE/optee_os.git
$ cd optee_os
$ ln -s ../Build/MmStandaloneRpmb/RELEASE_GCC5/FV/BL32_AP_MM.fd
$ export ARCH=arm
$ CROSS_COMPILE32=arm-linux-gnueabihf- make -j32 CFG_ARM64_core=y \

PLATFORM=<myboard> CFG_STMM_PATH=BL32_AP_MM.fd CFG_RPMB_FS=y \
CFG_RPMB_FS_DEV_ID=0 CFG_CORE_HEAP_SIZE=524288 CFG_RPMB_WRITE_KEY=y \
CFG_CORE_HEAP_SIZE=524288 CFG_CORE_DYN_SHM=y CFG_RPMB_TESTKEY=y \
CFG_REE_FS=n CFG_CORE_ARM64_PA_BITS=48 CFG_TEE_CORE_LOG_LEVEL=1 \
CFG_TEE_TA_LOG_LEVEL=1 CFG_SCTLR_ALIGNMENT_CHECK=n

Warning: Check caveats regarding CFG_RPMB_WRITE_KEY before enabling it

3.8. StandAloneMM 195

https://optee.readthedocs.io/en/latest/architecture/secure_storage.html#important-caveats

OP-TEE Documentation

3.8.3 U-Boot Build instructions

Although the StandAloneMM binary comes from EDK2, using and storing the variables is currently available in U-
Boot only.

$ git clone https://github.com/u-boot/u-boot.git
$ cd u-boot
$ export CROSS_COMPILE=aarch64-linux-gnu-
$ export ARCH=<arch>
$ make <myboard>_defconfig
$ make menuconfig

Enable CONFIG_OPTEE, CONFIG_CMD_OPTEE_RPMB and CONFIG_EFI_MM_COMM_TEE

$ make -j `nproc`

Warning:
• Your OP-TEE platform port must support Dynamic shared memory, since that’s the only kind of memory

U-Boot supports for now.

3.9 OP-TEE with Rust

This document describes how to build OP-TEE client and trusted applications written in Rust with Teaclave TrustZone
SDK.

3.9.1 Clone OP-TEE repo

Currently, Teaclave TrustZone SDK is compatible with QEMUv8 (aarch64).

Before building examples written with Teaclave TrustZone SDK, you should clone the OP-TEE repo first. For QE-
MUv8, run:

$ mkdir YOUR_OPTEE_DIR && cd YOUR_OPTEE_DIR
$ repo init -u https://github.com/OP-TEE/manifest.git -m qemu_v8.xml
$ repo sync

The source code of Teaclave TrustZone SDK is located in YOUR_OPTEE_DIR/optee_rust/ containing a set of exam-
ples written in Rust using the SDK.

For more information about building OP-TEE using QEMUv8, see run OP-TEE using QEMU .

196 Chapter 3. Build and run

https://www.rust-lang.org
https://github.com/apache/incubator-teaclave-trustzone-sdk
https://github.com/apache/incubator-teaclave-trustzone-sdk
https://optee.readthedocs.io/en/latest/building/devices/qemu.html#qemu-v8

OP-TEE Documentation

3.9.2 Compile Rust examples

Rust example applications are located in optee_rust/examples/. To build and install them with Buildroot, run:

$ (cd build && make toolchains && make OPTEE_RUST_ENABLE=y CFG_TEE_RAM_VA_
→˓SIZE=0x00300000)

Then start QEMUv8:

$ (cd build && make run-only)

Hint: Note that if you are under the environment without GUI, you can use soc_term instead.

Access to normal world terminal:

$./build/soc_term.py 54320

Access to secure world terminal:

$./build/soc_term.py 54321

Run QEMU:

$ (cd build && make run-only)

To differentiate from client applications generated by optee_examples , OP-TEE Rust examples are not prefixed with
optee_example_ but suffixed with -rs. More description about Rust examples can be found in Overview of OP-TEE
Rust Examples .

During the build process, host applications are installed to /usr/bin/ and TAs are installed to /lib/optee_armtz/.
After QEMU boots up, you can run host applications in normal world terminal. For example:

$ hello_world-rs
original value is 29
inc value is 129
dec value is 29
Success

TA log will be printed correspondingly in the secure terminal.

3.9.3 Development Documents

More information about developing OP-TEE applications in Rust can be found in Teaclave TrustZone SDK Documen-
tation.

3.9. OP-TEE with Rust 197

https://optee.readthedocs.io/en/latest/building/gits/optee_examples/optee_examples.html
https://teaclave.apache.org/trustzone-sdk-docs/overview-of-optee-rust-examples/
https://teaclave.apache.org/trustzone-sdk-docs/overview-of-optee-rust-examples/
https://teaclave.apache.org/trustzone-sdk-docs/
https://teaclave.apache.org/trustzone-sdk-docs/

OP-TEE Documentation

3.10 Linux userland integration

This document gives pointers on how particular features of OP-TEE may be used from the Linux userland in typical
application scenarios.

3.10.1 PKCS#11 driver

A common use-case is the integration of OP-TEE to securely store asymmetric keys inside the secure enclave. For
example, when using TLS with client certificates, the corresponding private keys would reside securely within OP-TEE.
If this client certificate is then used from within userspace, the corresponding cryptographic primitives are relayed to
OP-TEE which establishes the connection using the requested client certificate on behalf of the application. However,
the key itself never leaves secure storage (this is where it is created and resides).

The way this is done is via PKCS#11 (aka Cryptoki API). PKCS#11 specifies a number of standard calls to relay
cryptographic requests (such as a signing operation) to a third party module. Such a module may be a smart card or,
in the case of OP-TEE, it is a software PKCS#11 trusted application that appears to the userland as one. This trusted
application is accessed using a shared object (dynamic library) which serves as the “glue” to translate cryptographic
requests into OP-TEE calls. This shared object is libckteec.so which is part of the OP-TEE client tools.

Once OP-TEE has been compiled with the PKCS#11 TA, the client tools shared object has been built and the OP-TEE
supplicant has been started, we can use pkcs11-tool of the OpenSC project to initiate first communication with the
emulated smart card. In the following, we assume that libckteec.so has been installed in /usr/lib/libckteec.
so. For simplicity reasons, we define an alias to call pkcs11-tool using the appropriate PKCS#11 module.

alias p11="pkcs11-tool --module /usr/lib/libckteec.so"
p11 --show-info
Cryptoki version 2.40
Manufacturer Linaro
Library OP-TEE PKCS11 Cryptoki library (ver 0.1)
Using slot 0 with a present token (0x0)

Hint: When testing OP-TEE under QEMU, OpenSC should be built by default as well and the pkcs11-tool should
be available without modifications to the configuration. It can be explicitly requested by using the

make BR2_PACKAGE_OPENSC=y

build parameter when compiling OP-TEE.

This tells us the library code is already working. We can now display the different “slots”. You can think of them as
different “card readers” for virtual smart cards. In a typical use case, only one slot is used for a single smart card.

p11 --list-slots
Available slots:
Slot 0 (0x0): OP-TEE PKCS11 TA - TEE UUID 94e9ab89-4c43-56ea-8b35-45dc07226830
token state: uninitialized

Slot 1 (0x1): OP-TEE PKCS11 TA - TEE UUID 94e9ab89-4c43-56ea-8b35-45dc07226830
token state: uninitialized

Slot 2 (0x2): OP-TEE PKCS11 TA - TEE UUID 94e9ab89-4c43-56ea-8b35-45dc07226830
token state: uninitialized

Observe that the connection to the TA is also successfully working and it is showing three inserted (but “empty”,
uninitialized) smart cards/tokens. Before we are able to create keys on these tokens, we need to initialize them with a

198 Chapter 3. Build and run

https://github.com/OP-TEE/optee_client
https://github.com/OpenSC/OpenSC

OP-TEE Documentation

SO-PIN and PIN. The SO-PIN is the “super pin”, while the PIN is the “user pin”. The concept is likely familiar to you
from the SIM card of your phone, where the PUK acts as the “super pin”.

First, we initialize the SO-PIN of slot 0 and name our token “mytoken”:

p11 --init-token --label mytoken --so-pin 1234567890
Using slot 0 with a present token (0x0)
Token successfully initialized

We have successfully initialized the SO-PIN to “1234567890”. Now we “log in” into the token using that SO-PIN and,
using the SO-PIN authorization, initialize the PIN of the token to “12345”:

p11 --label mytoken --login --so-pin 1234567890 --init-pin --pin 12345
Using slot 0 with a present token (0x0)
User PIN successfully initialized

We can now verify that the token has been successfully initialized:

p11 --list-slots
Available slots:
Slot 0 (0x0): OP-TEE PKCS11 TA - TEE UUID 94e9ab89-4c43-56ea-8b35-45dc07226830
token label : mytoken
token manufacturer : Linaro
token model : OP-TEE TA
token flags : login required, rng, token initialized, PIN initialized
hardware version : 0.0
firmware version : 0.1
serial num : 0000000000000000
pin min/max : 4/128

Slot 1 (0x1): OP-TEE PKCS11 TA - TEE UUID 94e9ab89-4c43-56ea-8b35-45dc07226830
token state: uninitialized

Slot 2 (0x2): OP-TEE PKCS11 TA - TEE UUID 94e9ab89-4c43-56ea-8b35-45dc07226830
token state: uninitialized

Now we have a fully initialized token but it still contains no keys. To list what cryptographic primitives the particular
OP-TEE version offers, you can query the supported mechanisms:

p11 --list-mechanisms
Using slot 0 with a present token (0x0)
Supported mechanisms:
SHA224-RSA-PKCS-PSS, keySize={256,4096}, sign, verify
SHA224-RSA-PKCS, keySize={256,4096}, sign, verify
SHA512-RSA-PKCS-PSS, keySize={256,4096}, sign, verify
SHA384-RSA-PKCS-PSS, keySize={256,4096}, sign, verify
SHA256-RSA-PKCS-PSS, keySize={256,4096}, sign, verify
SHA512-RSA-PKCS, keySize={256,4096}, sign, verify
SHA384-RSA-PKCS, keySize={256,4096}, sign, verify
SHA256-RSA-PKCS, keySize={256,4096}, sign, verify
SHA1-RSA-PKCS-PSS, keySize={256,4096}, sign, verify
RSA-PKCS-OAEP, keySize={256,4096}, encrypt, decrypt
SHA1-RSA-PKCS, keySize={256,4096}, sign, verify
MD5-RSA-PKCS, keySize={256,4096}, sign, verify
RSA-PKCS-PSS, sign, verify
RSA-PKCS, keySize={256,4096}, encrypt, decrypt, sign, verify
RSA-PKCS-KEY-PAIR-GEN, keySize={256,4096}, generate_key_pair

(continues on next page)

3.10. Linux userland integration 199

OP-TEE Documentation

(continued from previous page)

ECDSA-SHA512, keySize={160,521}, sign, verify
ECDSA-SHA384, keySize={160,521}, sign, verify
ECDSA-SHA256, keySize={160,521}, sign, verify
ECDSA-SHA224, keySize={160,521}, sign, verify
ECDSA-SHA1, keySize={160,521}, sign, verify
ECDSA, keySize={160,521}, sign, verify
ECDSA-KEY-PAIR-GEN, keySize={160,521}, generate_key_pair
mechtype-0x272, keySize={32,128}, sign, verify
mechtype-0x262, keySize={32,128}, sign, verify
mechtype-0x252, keySize={24,128}, sign, verify
mechtype-0x257, keySize={14,64}, sign, verify
SHA-1-HMAC-GENERAL, keySize={10,64}, sign, verify
MD5-HMAC-GENERAL, keySize={8,64}, sign, verify
SHA512-HMAC, keySize={32,128}, sign, verify
SHA384-HMAC, keySize={32,128}, sign, verify
SHA256-HMAC, keySize={24,128}, sign, verify
SHA224-HMAC, keySize={14,64}, sign, verify
SHA-1-HMAC, keySize={10,64}, sign, verify
MD5-HMAC, keySize={8,64}, sign, verify
SHA512, digest
SHA384, digest
SHA256, digest
SHA224, digest
SHA-1, digest
MD5, digest
GENERIC-SECRET-KEY-GEN, keySize={1,4096}, generate
AES-KEY-GEN, keySize={16,32}, generate
AES-CBC-ENCRYPT-DATA, derive
AES-ECB-ENCRYPT-DATA, derive
mechtype-0x108B, keySize={16,32}, sign, verify
AES-CMAC, keySize={16,32}, sign, verify
mechtype-0x1089, keySize={16,32}, encrypt, decrypt
AES-CTR, keySize={16,32}, encrypt, decrypt
AES-CBC-PAD, keySize={16,32}, encrypt, decrypt
AES-CBC, keySize={16,32}, encrypt, decrypt, wrap, unwrap
AES-ECB, keySize={16,32}, encrypt, decrypt, wrap, unwrap

In our case, we would want to create an elliptic curve keypair on P-256 (aka secp256r1 or prime256v1). As you can
see, this is supported (“ECDSA-KEY-PAIR-GEN” supports between 160 and 521 bit curves).

p11 -l --pin 12345 --keypairgen --key-type EC:prime256v1 --label mykey
Using slot 0 with a present token (0x0)
Key pair generated:
Private Key Object; EC
label: mykey
Usage: sign, derive
Access: sensitive, always sensitive, never extractable, local

Public Key Object; EC EC_POINT 256 bits
EC_POINT: ␣

→˓044104e3f89bd32ac8101ba675815fbaf34c4f34bb7bb2d233589983bad934cfa09795d56811747778d22b94e245028d3af6aff9e6abbbdb3a75fe1433182c605868c7
EC_PARAMS: 06082a8648ce3d030107
label: mykey

(continues on next page)

200 Chapter 3. Build and run

OP-TEE Documentation

(continued from previous page)

Usage: verify, derive
Access: local

You can see the public key, which is a point on the elliptic curve. The byte 04 at byte offset 2 indicates that this point
is represented in uncompressed affine representation, i.e., X and Y coordinates follow that byte directly. This format
is not ideal to interface common libraries, however. Especially when using PKI with X.509 certificates, we typically
want a PEM-formatted CSR to be able to create a certificate from.

For this, we create a small configuration file for OpenSSL and call it optee_hsm.conf. It references a library of libp11
which acts as a driver that enables OpenSSL to interface with a PKCS#11 library.

openssl_conf = openssl_conf

[openssl_conf]
engines = engine_section

[engine_section]
pkcs11 = pkcs11_section

[pkcs11_section]
engine_id = pkcs11
dynamic_path = /usr/lib/engines-1.1/libpkcs11.so
MODULE_PATH = /usr/lib/libckteec.so
PIN = 12345

[req]
distinguished_name = req_distinguished_name

[req_distinguished_name]

Hint: When testing OP-TEE under QEMU, libp11 is not compiled by default. For easy access to this library, you can
build OP-TEE using the command

make BR2_PACKAGE_OPENSC=y BR2_PACKAGE_LIBOPENSSL=y BR2_PACKAGE_LIBOPENSSL_BIN=y BR2_
→˓PACKAGE_LIBP11=y

This will ensure that OpenSC (for the command line utility pkcs11-tool), OpenSSL, and libp11 are all built
and installed in the QEMU environment. Note that in that environment, libpkcs11.so will reside at /usr/lib/
engines-1.1/libpkcs11.so.

Then, we can ask OpenSSL to create a CSR from the key we have previously created:

OPENSSL_CONF=optee_hsm.conf openssl req -new -engine pkcs11 -keyform engine -key label_
→˓mykey -subj "/CN=My CSR" -out mykey_csr.pem
engine "pkcs11" set.

We can then inspect said CSR:

$ openssl req -in mykey_csr.pem -text
Certificate Request:

Data:
Version: 1 (0x0)

(continues on next page)

3.10. Linux userland integration 201

https://github.com/OpenSC/libp11

OP-TEE Documentation

(continued from previous page)

Subject: CN = My CSR
Subject Public Key Info:

Public Key Algorithm: id-ecPublicKey
Public-Key: (256 bit)
pub:

04:e3:f8:9b:d3:2a:c8:10:1b:a6:75:81:5f:ba:f3:
4c:4f:34:bb:7b:b2:d2:33:58:99:83:ba:d9:34:cf:
a0:97:95:d5:68:11:74:77:78:d2:2b:94:e2:45:02:
8d:3a:f6:af:f9:e6:ab:bb:db:3a:75:fe:14:33:18:
2c:60:58:68:c7

ASN1 OID: prime256v1
NIST CURVE: P-256

Attributes:
a0:00

Signature Algorithm: ecdsa-with-SHA256
30:45:02:20:61:7e:05:30:cf:4d:d0:93:22:78:9e:45:cf:af:
3c:83:bb:04:c4:f0:81:f6:9a:5c:97:cd:ac:1e:94:cd:17:1b:
02:21:00:e7:7f:88:1d:4f:56:b8:e2:87:be:76:de:28:b3:92:
68:a7:16:3a:56:af:79:2f:98:bd:fd:6d:b3:82:e1:15:6c

Note that the public key matches exactly that which we have previously created (04 e3 f8...). This CSR could then
be signed by a CA. For simplicity purposes, we can also use a self-signed certificate and sign with our own OP-TEE
contained key:

OPENSSL_CONF=optee_hsm.conf openssl req -new -engine pkcs11 -keyform engine -key label_
→˓mykey -subj "/CN=My CSR" -x509 -out mykey_selfsigned_cert.pem
engine "pkcs11" set.

Again we can review this self-signed certificate:

$ openssl x509 -in mykey_selfsigned_cert.pem -text
Certificate:

Data:
Version: 1 (0x0)
Serial Number:

3f:8f:c8:c0:de:a8:75:ca:9d:62:79:31:c2:6c:48:f4:fd:50:22:1d
Signature Algorithm: ecdsa-with-SHA256
Issuer: CN = My CSR
Validity

Not Before: Mar 22 20:19:15 2023 GMT
Not After : Apr 21 20:19:15 2023 GMT

Subject: CN = My CSR
Subject Public Key Info:

Public Key Algorithm: id-ecPublicKey
Public-Key: (256 bit)
pub:

04:e3:f8:9b:d3:2a:c8:10:1b:a6:75:81:5f:ba:f3:
4c:4f:34:bb:7b:b2:d2:33:58:99:83:ba:d9:34:cf:
a0:97:95:d5:68:11:74:77:78:d2:2b:94:e2:45:02:
8d:3a:f6:af:f9:e6:ab:bb:db:3a:75:fe:14:33:18:
2c:60:58:68:c7

ASN1 OID: prime256v1
(continues on next page)

202 Chapter 3. Build and run

OP-TEE Documentation

(continued from previous page)

NIST CURVE: P-256
Signature Algorithm: ecdsa-with-SHA256

30:45:02:20:4a:9d:63:f2:e0:12:4b:46:eb:eb:62:34:9e:86:
3d:d4:c8:cf:5f:c0:44:fe:8b:71:a0:b8:fa:41:d9:0b:60:3a:
02:21:00:fb:c2:b3:0a:7b:54:e9:bb:66:7b:8e:f7:11:52:81:
69:81:a6:cc:d0:bf:a2:7c:f7:2a:67:db:ab:f1:f3:2c:9f

-----BEGIN CERTIFICATE-----
MIIBHDCBwwIUP4/IwN6odcqdYnkxwmxI9P1QIh0wCgYIKoZIzj0EAwIwETEPMA0G
A1UEAwwGTXkgQ1NSMB4XDTIzMDMyMjIwMTkxNVoXDTIzMDQyMTIwMTkxNVowETEP
MA0GA1UEAwwGTXkgQ1NSMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE4/ib0yrI
EBumdYFfuvNMTzS7e7LSM1iZg7rZNM+gl5XVaBF0d3jSK5TiRQKNOvav+earu9s6
df4UMxgsYFhoxzAKBggqhkjOPQQDAgNIADBFAiBKnWPy4BJLRuvrYjSehj3UyM9f
wET+i3GguPpB2QtgOgIhAPvCswp7VOm7ZnuO9xFSgWmBpszQv6J89ypn26vx8yyf
-----END CERTIFICATE-----

To test our self-signed certificate as a client certificate, we first need to initialize a TLS server. This can either be
done on a remote machine or locally. For the server we will again use a self-signed certificate (but simply store the
corresponding private key in a file).

$ openssl ecparam -genkey -name prime256v1 -out server_key.pem
$ openssl req -new -x509 -key server_key.pem -subj '/CN=Server' -out server_cert.pem
$ openssl s_server -accept 9876 -cert server_cert.pem -key server_key.pem -www -Verify 1
verify depth is 1, must return a certificate
Using default temp DH parameters
ACCEPT

This starts a HTTPS server which listens at port 9876 and requires a TLS client certificate. We can validate that the
connection to the server is refused if no client certificate is provided. Assume that 192.168.178.34 is the IPv4 address
of the server:

$ curl -k https://192.168.178.34:9876
curl: (56) OpenSSL SSL_read: error:0A00045C:SSL routines::tlsv13 alert certificate␣
→˓required, errno 0

Now on our OP-TEE device we can use OpenSSL to establish a connection using our OP-TEE stored client certificate:

OPENSSL_CONF=optee_hsm.conf openssl s_client -engine pkcs11 -connect 192.168.178.
→˓34:9876 -cert mykey_selfsigned_cert.pem -keyform engine -key label_mykey
engine "pkcs11" set.
CONNECTED(00000004)
Can't use SSL_get_servername
depth=0 CN = Server
verify error:num=18:self signed certificate
verify return:1
depth=0 CN = Server
verify return:1

Certificate chain
0 s:CN = Server
i:CN = Server

Server certificate
-----BEGIN CERTIFICATE-----

(continues on next page)

3.10. Linux userland integration 203

OP-TEE Documentation

(continued from previous page)

MIIBeDCCAR2gAwIBAgIUDnUzOcNS9AgeJhvVmp73wF5DwxQwCgYIKoZIzj0EAwIw
ETEPMA0GA1UEAwwGU2VydmVyMB4XDTIzMDMyMjIwMjMwMloXDTIzMDQyMTIwMjMw
MlowETEPMA0GA1UEAwwGU2VydmVyMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE
qnCvLjLa1XWBtY1OQjaHa60re5vnZ2WY555XSsFCe2RoF7wGBDDrdXKkQz9Vy0t4
d5OC6VMcFhia967nGa5zPqNTMFEwHQYDVR0OBBYEFBKTMLG057a/a2exmeF7dHVH
85D0MB8GA1UdIwQYMBaAFBKTMLG057a/a2exmeF7dHVH85D0MA8GA1UdEwEB/wQF
MAMBAf8wCgYIKoZIzj0EAwIDSQAwRgIhAIeKwlghSkhA8zvpXsl9y6WSCXo9fRzt
DSl6myUsgac/AiEAhipKSjVQAvJAqXIecmMylqjY79XVzrbxKWYjsL1XdLw=
-----END CERTIFICATE-----
subject=CN = Server

issuer=CN = Server

No client certificate CA names sent
Requested Signature Algorithms: ECDSA+SHA256:ECDSA+SHA384:ECDSA+SHA512:Ed25519:Ed448:RSA-
→˓PSS+SHA256:RSA-PSS+SHA384:RSA-PSS+SHA512:RSA-PSS+SHA256:RSA-PSS+SHA384:RSA-
→˓PSS+SHA512:RSA+SHA256:RSA+SHA384:RSA+SHA512:ECDSA+SHA224:RSA+SHA224
Shared Requested Signature Algorithms:␣
→˓ECDSA+SHA256:ECDSA+SHA384:ECDSA+SHA512:Ed25519:Ed448:RSA-PSS+SHA256:RSA-PSS+SHA384:RSA-
→˓PSS+SHA512:RSA-PSS+SHA256:RSA-PSS+SHA384:RSA-
→˓PSS+SHA512:RSA+SHA256:RSA+SHA384:RSA+SHA512
Peer signing digest: SHA256
Peer signature type: ECDSA
Server Temp Key: X25519, 253 bits

SSL handshake has read 817 bytes and written 797 bytes
Verification error: self signed certificate

New, TLSv1.3, Cipher is TLS_AES_256_GCM_SHA384
Server public key is 256 bit
Secure Renegotiation IS NOT supported
Compression: NONE
Expansion: NONE
No ALPN negotiated
Early data was not sent
Verify return code: 18 (self signed certificate)
[...]

When connected, you can type “GET /” and press return to get a HTML response back from the HTTPS server, which
will echo your client certificate inside a HTML page.

204 Chapter 3. Build and run

CHAPTER

FOUR

DEBUGGING TECHNIQUES

4.1 Abort dumps / call stack

When OP-TEE encounters a serious error condition, it prints diagnostic information to the secure console. The message
contains a call stack if CFG_UNWIND=y (enabled by default).

The following errors will trigger a dump:

• Data or prefetch abort exception in the TEE core (kernel mode) or in a TA (user mode),

• When a user-mode Trusted Application panics, either by calling TEE_Panic() directly or due to some error
detected by the TEE Core Internal API,

• When the TEE core detects a fatal error and decides to hang the system because there is no way to proceed safely
(core panic).

The messages look slightly different depending on:

• Whether the error is an exception or a panic,

• The exception/privilege level when the exception occurred (PL0/EL0 if a user mode Trusted Application was
running, PL1/EL1 if it was the TEE core),

• Whether the TEE and TA are 32 or 64 bits,

• The exact type of exception (data or prefetch abort, translation fault, read or write permission fault, alignment
errors etc).

Here is an example of a panic in a 32-bit Trusted Application, running on a 32-bit TEE core (QEMU):

E/TC:0 TA panicked with code 0x0
E/TC:0 Status of TA 484d4143-2d53-4841-3120-4a6f636b6542 (0xe07ba50) (active)
E/TC:0 arch: arm load address: 0x101000 ctx-idr: 1
E/TC:0 stack: 0x100000 4096
E/TC:0 region 0: va 0x100000 pa 0xe31d000 size 0x1000 flags rw-
E/TC:0 region 1: va 0x101000 pa 0xe300000 size 0xf000 flags r-x
E/TC:0 region 2: va 0x110000 pa 0xe30f000 size 0x3000 flags r--
E/TC:0 region 3: va 0x113000 pa 0xe312000 size 0xb000 flags rw-
E/TC:0 region 4: va 0 pa 0 size 0 flags ---
E/TC:0 region 5: va 0 pa 0 size 0 flags ---
E/TC:0 region 6: va 0 pa 0 size 0 flags ---
E/TC:0 region 7: va 0 pa 0 size 0 flags ---
E/TC:0 Call stack:
E/TC:0 0x001044a8
E/TC:0 0x0010ba59

(continues on next page)

205

OP-TEE Documentation

(continued from previous page)

E/TC:0 0x00101093
E/TC:0 0x001013ed
E/TC:0 0x00101545
E/TC:0 0x0010441b
E/TC:0 0x00104477
D/TC:0 user_ta_enter:452 tee_user_ta_enter: TA panicked with code 0x0
D/TC:0 tee_ta_invoke_command:649 Error: ffff3024 of 3
D/TC:0 tee_ta_close_session:402 tee_ta_close_session(0xe07be98)
D/TC:0 tee_ta_close_session:421 Destroy session
D/TC:0 tee_ta_close_session:447 Destroy TA ctx

The above dump was triggered by the TA when entering an irrecoverable error ending up in a TEE_Panic(0) call.

OP-TEE provides a helper script called symbolize.py to facilitate the analysis of such issues. It is located in the
OP-TEE OS source tree in scripts/symbolize.py and is also copied to the TA development kit. Whenever you are
confronted with an error message reporting a serious error and containing a "Call stack:" line, you may use the
symbolize script. It is meant to be run on the host system (build environment), not on the target.

symbolize.py reads its input from stdin and writes extended debug information to stdout. The -d (directories)
option tells the script where to look for TA ELF file(s) (<uuid>.stripped.elf) or for tee.elf (the TEE core).
Please refer to symbolize.py --help for details.

Typical output:

$ cat dump.txt | ./optee_os/scripts/symbolize.py -d ./optee_examples/*/ta
(or run the script, copy and paste the dump, then press Ctrl+D)
E/TC:0 TA panicked with code 0x0
E/TC:0 Status of TA 484d4143-2d53-4841-3120-4a6f636b6542 (0xe07ba50) (active)
E/TC:0 arch: arm load address: 0x101000 ctx-idr: 1
E/TC:0 stack: 0x100000 4096
E/TC:0 region 0: va 0x100000 pa 0xe31d000 size 0x1000 flags rw-
E/TC:0 region 1: va 0x101000 pa 0xe300000 size 0xf000 flags r-x .ta_head .text .rodata
E/TC:0 region 2: va 0x110000 pa 0xe30f000 size 0x3000 flags r-- .rodata .ARM.extab .ARM.
→˓extab.text.utee_panic .ARM.extab.text.__aeabi_ldivmod .ARM.extab.text.__aeabi_uldivmod␣
→˓.ARM.exidx .got .dynsym .rel.got .dynamic .dynstr .hash .rel.dyn
E/TC:0 region 3: va 0x113000 pa 0xe312000 size 0xb000 flags rw- .data .bss
E/TC:0 region 4: va 0 pa 0 size 0 flags ---
E/TC:0 region 5: va 0 pa 0 size 0 flags ---
E/TC:0 region 6: va 0 pa 0 size 0 flags ---
E/TC:0 region 7: va 0 pa 0 size 0 flags ---
E/TC:0 Call stack:
E/TC:0 0x001044a8 utee_panic at optee_os/lib/libutee/arch/arm/utee_syscalls_a32.S:74
E/TC:0 0x0010ba59 TEE_Panic at optee_os/lib/libutee/tee_api_panic.c:35
E/TC:0 0x00101093 hmac_sha1 at optee_examples/hotp/ta/hotp_ta.c:63
E/TC:0 0x001013ed get_hotp at optee_examples/hotp/ta/hotp_ta.c:171
E/TC:0 0x00101545 TA_InvokeCommandEntryPoint at optee_examples/hotp/ta/hotp_ta.c:225
E/TC:0 0x0010441b entry_invoke_command at optee_os/lib/libutee/arch/arm/user_ta_entry.
→˓c:207
E/TC:0 0x00104477 __utee_entry at optee_os/lib/libutee/arch/arm/user_ta_entry.c:235
D/TC:0 user_ta_enter:452 tee_user_ta_enter: TA panicked with code 0x0 ???
D/TC:0 tee_ta_invoke_command:649 Error: ffff3024 of 3
D/TC:0 tee_ta_close_session:402 tee_ta_close_session(0xe07be98)
D/TC:0 tee_ta_close_session:421 Destroy session
D/TC:0 tee_ta_close_session:447 Destroy TA ctx

206 Chapter 4. Debugging techniques

OP-TEE Documentation

The Python script uses several tools from the GNU Binutils package to perform the following tasks:

1. Translate the call stack addresses into function names, file names and line numbers.

2. Convert the abort address to a symbol plus some offset and/or an ELF section name plus some offset.

3. Print the names of the ELF sections contained in each memory region of a TA.

Note that to successfully run symbolize.py you must also make your toolchain visible on the PATH (i.e., export
PATH=<my-toolchain-path>/bin:$PATH).

4.2 Ftrace (function tracing)

This section describes how to generate a function call graph for user Trusted Applications using ftrace. The name
comes from the Linux framework which has a similar purpose, but the OP-TEE ftrace is very much specific.

A call graph logs all the calls to instrumented functions and contains timing information. It is therefore a valuable tool
to troubleshoot performance problems or to optimize the code in general.

The configuration option CFG_FTRACE_SUPPORT=y enables OP-TEE to collect function graph information from
Trusted Applications running in user mode and compiled with -pg. Once collected, the function graph data is
sent to tee-supplicant via RPC, so they can be saved to disk, later processed and displayed using helper scripts
(ftrace_format.py and symbolize.py which can be found in optee_os/scripts).

Another configuration option CFG_SYSCALL_FTRACE=y in addition to CFG_FTRACE_SUPPORT=y enables OP-TEE to
collect function graph information for syscalls as well while running in kernel mode on behalf of Trusted Applications.
Note that a small number of kernel functions cannot be traced; they have the __noprof attribute in the source code.

A third configuration option CFG_ULIBS_MCOUNT=y enables tracing of user space libraries contained in optee_os and
used by TAs (such as libutee and libutils).

4.2.1 Usage

• Build OP-TEE OS with CFG_FTRACE_SUPPORT=y and optionally CFG_ULIBS_MCOUNT=y and
CFG_SYSCALL_FTRACE=y.

• Build user TAs with -pg, for instance enable CFG_TA_MCOUNT=y to instrument the whole TA. Also,
in case user wants to set -pg for a particular file, following should go in corresponding sub.mk:
cflags-<file-name>-y+=-pg. Note that instrumented TAs have a larger .bss section. The memory over-
head depends on CFG_FTRACE_BUF_SIZE macro which can be configured specific to user TAs using con-
fig: CFG_FTRACE_BUF_SIZE=4096 (default value: 2048, refer to the TA linker script for details: ta/arch/
$(ARCH)/ta.ld.S).

• Run the application normally. When the current session exits or there is any abort during TA execution,
tee-supplicant will write function graph data to /tmp/ftrace-<ta_uuid>.out. If the file already exists,
a number is appended, such as: ftrace-<ta_uuid>.1.out.

• Run helper scripts called ftrace_format.py to translate the function graph binary data into human readable text
and symbolize.py to convert function addresses into function names: optee_os/scripts/ftrace_format.
py ftrace-<ta_uuid>.out | optee_os/scripts/symbolize.py -d <ta_uuid>.elf -d tee.elf

• Refer to commit 5c2c0fb31efb for a full usage example on QEMU.

4.2. Ftrace (function tracing) 207

https://github.com/OP-TEE/optee_os/commit/5c2c0fb31efb

OP-TEE Documentation

4.2.2 Typical output

TEE load address @ 0x5ab04000
Function graph for TA: cb3e5ba0-adf1-11e0-998b-0002a5d5c51b @ 80085000

| 1 | __ta_entry() {
| 2 | __utee_entry() {

43.840 us | 3 | ta_header_get_session()
7.216 us | 3 | tahead_get_trace_level()
14.480 us | 3 | trace_set_level()

| 3 | malloc_add_pool() {
| 4 | raw_malloc_add_pool() {

46.032 us | 5 | bpool()
| 5 | raw_realloc() {

166.256 us | 6 | bget()
23.056 us | 6 | raw_malloc_return_hook()

267.952 us | 5 | }
398.720 us | 4 | }
426.992 us | 3 | }

| 3 | TEE_GetPropertyAsU32() {
23.600 us | 4 | is_propset_pseudo_handle()

| 4 | __utee_check_instring_annotation() {
26.416 us | 5 | strlen()

| 5 | check_access() {
| 6 | TEE_CheckMemoryAccessRights() {
| 7 | _utee_check_access_rights() {
| 8 | syscall_check_access_rights() {
| 9 | ts_get_current_session() {

4.304 us | 10 | ts_get_current_session_may_fail()
10.976 us | 9 | }

| 9 | to_user_ta_ctx() {
2.496 us | 10 | is_user_ta_ctx()
8.096 us | 9 | }

| 9 | vm_check_access_rights() {
| 10 | vm_buf_is_inside_um_private() {
| 11 | core_is_buffer_inside() {

...

The duration (function’s time of execution) is displayed on the closing bracket line of a function or on the same line
in case the function is the leaf one. In other words, duration is displayed whenever an instrumented function returns.
It comprises the time spent executing the function and any of its callees. The Counter-timer Physical Count register
(CNTPCT) and the Counter-timer Frequency register (CNTFRQ) are used to compute durations. Time spent servicing
foreign interrupts is subtracted.

The second column is the stack depth for the current function. It helps visually match function entries and exit.

208 Chapter 4. Debugging techniques

OP-TEE Documentation

4.3 Gprof

This describes to do profiling of user Trusted Applications with gprof.

The configuration option CFG_TA_GPROF_SUPPORT=y enables OP-TEE to collect profiling information from Trusted
Applications running in user mode and compiled with -pg. Once collected, the profiling data are formatted in the gmon.
out format and sent to tee-supplicant via RPC, so they can be saved to disk and later processed and displayed by
the standard gprof tool.

4.3.1 Usage

• Build OP-TEE OS with CFG_TA_GPROF_SUPPORT=y. You may also set CFG_ULIBS_MCOUNT=y to instrument
the user TA libraries contained in optee_os (such as libutee and libutils).

• Build user TAs with -pg, for instance enable: CFG_TA_MCOUNT=y to instrument whole user TA. Note that in-
strumented TAs have a larger .bss section. The memory overhead is 1.36 times the .text size for 32-bit TAs,
and 1.77 times for 64-bit ones (refer to the TA linker script for details: ta/arch/arm/ta.ld.S).

• Run the application normally. When the last session exits, tee-supplicant will write profiling data to /tmp/
gmon-<ta_uuid>.out. If the file already exists, a number is appended, such as: gmon-<ta_uuid>.1.out.

• Run gprof on the TA ELF file and profiling output: gprof <ta_uuid>.elf gmon-<ta_uuid>.out

4.3.2 Implementation

Part of the profiling is implemented in libutee. Another part is done in the TEE core by a pseudo-TA (core/arch/
arm/sta/gprof.c). Two types of data are collected:

1. Call graph information
• When TA source files are compiled with the -pg switch, the compiler generates extra code into each

function prologue to call the instrumentation entry point (__gnu_mcount_nc or _mcount depending
on the architecture). Each time an instrumented function is called, libutee records a pair of program
counters (one is the caller and the other one is the callee) as well as the number of times this specific
arc of the call graph has been invoked.

2. PC distribution over time
• When an instrumented TA starts, libutee calls the pseudo-TA to start PC sampling for the current

session. Sampling data are written into the user-space buffer directly by the TEE core.

• Whenever the TA execution is interrupted, the TEE core records the current program counter value
and builds a histogram of program locations (i.e., relative amount of time spent for each value of the
PC). This is later used by the gprof tool to derive the time spent in each function. The sampling rate,
which is assumed to be roughly constant, is computed by keeping track of the time spent executing
user TA code and dividing the number of interrupts by the total time.

• The profiling buffer into which call graph and sampling data are recorded is allocated in the TA’s .bss
section. Some space is reserved by the linker script, only when the TA is instrumented.

4.3. Gprof 209

OP-TEE Documentation

210 Chapter 4. Debugging techniques

CHAPTER

FIVE

FREQUENTLY ASKED QUESTIONS

Table of Contents

• Frequently Asked Questions

– Abbreviations

– Architecture

∗ Q: Which platforms/architectures are supported?

∗ Q: Are 32-bit as well as 64-bit support?

∗ Q: Does OP-TEE support mixed-mode, i.e., both AArch32 and AArch64 Trusted Applications on
top of an AArch64 core?

∗ Q: What’s the maximum size for heap and stack? Can it be changed?

∗ Q: What is the size of OP-TEE itself?

∗ Q: Can NEON optimizations be done in OP-TEE?

∗ Q: Can I use C++ libraries in OP-TEE?

∗ Q: Would using malloc() in OP-TEE give physically contiguous memory?

∗ Q: Can I limit what CPUs / cores OP-TEE runs on?

∗ Q: How is OP-TEE being scheduled?

– Board support

∗ Q: How do I port OP-TEE to another platform?

– Building

∗ Q: I got build errors running latest, why?

∗ Q: I got build errors running stable tag x.y.z, why?

∗ Q: I get gcc XYZ or g++ XYZ compiler error messages?

∗ Q: I found this build.git, what is that?

∗ Q: When running make from build.git it fails to download the toolchains?

∗ Q: How can I build LLVM compiler-rt with BTI enabled ?

∗ Q: How can I build GCC with BTI enabled?

∗ Q: What is the quickest and easiest way to try OP-TEE?

211

OP-TEE Documentation

– Certification and security reviews

∗ Q: Will TrustedFirmware.org be involved in GlobalPlatform certification/qualification?

∗ Q: Has any test lab been testing OP-TEE?

∗ Q: Where are listed security vulnerabilities addressed in OP-TEE

∗ Q: Have there been any code audit / code review done?

– Contribution

∗ Q: How do I contribute?

∗ Q: Where can I get help?

∗ Q: I’m new to OP-TEE but I would like to help out, what can I do?

– Interfaces

∗ Q: Which API’s have been implemented in OP-TEE?

∗ Q: Which Linux kernel version supports <some OP-TEE feature>?

– Hardware and peripherals

∗ Q: Can I use my own hardware IP for crypto acceleration?

– License

∗ Q: Under what license is OP-TEE released?

∗ Q: GlobalPlatform click-through license

∗ Q: I’ve modified OP-TEE by using code with non BSD 2-Clause license, will you accept it?

– Promotion

∗ Q: I want to get my company logo on op-tee.org, how?

– Security vulnerabilities

∗ Q: I have a found a security flaw in OP-TEE, how can I disclose it with you?

– Source code

∗ Q: Where is the source code?

∗ Q: Where do I download the test suite called xtest?

∗ Q: Where is the Linux kernel TEE driver?

– Testing

∗ Q: How are you testing OP-TEE?

– Trusted Applications

∗ Q: How do I write a Trusted Application (TA)?

∗ Q: How do I link a library into a Trusted Application?

∗ Q: Where should I put my compiled Trusted Application on the device?

∗ Q: What is a Pseudo TA and how do I write one?

∗ Q: Are Pseudo user space TAs supported?

∗ Q: Can a static TA Open/Invoke dynamic TA?

212 Chapter 5. Frequently Asked Questions

OP-TEE Documentation

∗ Q: How can I extend the GlobalPlatform Internal Core API?

∗ Q: How are Trusted Applications verified?

∗ Q: Is multi-core TA supported?

∗ Q: Is multi-threading supported in a TA?

∗ Q: How can I use or call OP-TEE from native Android (apk) applications?

∗ Q: I’ve heard that there is a Widevine and PlayReady TA, how do I get access?

5.1 Abbreviations

OP-TEE
Open Portable TEE

TA
Trusted Application

TEE
Trusted Execution Environment

TZASC
TrustZone Address Space Controller

TZPC
TrustZone Protection Controller

5.2 Architecture

5.2.1 Q: Which platforms/architectures are supported?

• The Platforms supported page lists all platforms and architectures currently supported in the official tree.

5.2.2 Q: Are 32-bit as well as 64-bit support?

• Both 32- and 64-bit are fully supported for all OP-TEE components.

5.2.3 Q: Does OP-TEE support mixed-mode, i.e., both AArch32 and AArch64
Trusted Applications on top of an AArch64 core?

• Yes!

5.1. Abbreviations 213

OP-TEE Documentation

5.2.4 Q: What’s the maximum size for heap and stack? Can it be changed?

• Yes, it can be changed. In the current setup (for vexpress for example), there are 32MB DDR dedicated for OP-TEE.
1MB for TEE RAM and 1MB for PUB RAM, this leaves 30MB for Trusted Applications. In the Trusted Applications,
you set TA_STACK_SIZE and TA_DATA_SIZE. Typically, we set stack to 2KB and data to 32K. But you are free
to adjust those according to the amount of memory you have available. If you need them to be bigger than 1MB
then you also must adjust TA’s MMU L1 table accordingly, since default section mapping is 1MB.

5.2.5 Q: What is the size of OP-TEE itself?

• As of 2016.01, optee_os is about 244KB (release build). It is preferred to run optee_os entirely in SRAM, but if
there is not enough room, DRAM can be used and protected with TZASC. We are also looking into the possibility
of creating a ‘minimal’ OP-TEE, i.e. a limited OP-TEE usable even in a very memory constrained environment,
by eliminating as many memory-hungry parts as possible. There is however no ETA for this at the moment.

• You can check the memory usage by using the make mem_usage target in optee_os, for example:

$ make ... mem_usage
Which will output a file with the figures here:
out/arm/core/tee.mem_usage

You will of course get different sizes depending on what compile time flags you have enabled when running make
mem_usage.

5.2.6 Q: Can NEON optimizations be done in OP-TEE?

• Yes (for additional information, please also see Issue#953)

5.2.7 Q: Can I use C++ libraries in OP-TEE?

• C++ libraries are currently not supported. Technically, it is possible but will require a fair amount of work to
implement, especially more so if exceptions are required. There are currently no plans to do this.

• See Issue#2628 for related information.

5.2.8 Q: Would using malloc() in OP-TEE give physically contiguous memory?

• malloc() in OP-TEE currently gives physically contiguous memory. It is not guaranteed as it is not mentioned
anywhere in the documentation, but in practice the heap only has physically contiguous memory in the pool(s).
The heap in OP-TEE is normally quite small, ~24KiB, and could be a bit fragmented.

5.2.9 Q: Can I limit what CPUs / cores OP-TEE runs on?

• Currently it’s up to the kernel to decide which core it runs on, i.e, it will be the same core as the one initiating
the SMC in Linux. Please also see Issue#1194.

214 Chapter 5. Frequently Asked Questions

https://github.com/OP-TEE/optee_os/issues/953
https://github.com/OP-TEE/optee_os/issues/2628
https://github.com/OP-TEE/optee_os/issues/1194

OP-TEE Documentation

5.2.10 Q: How is OP-TEE being scheduled?

• OP-TEE does not have its own scheduler, instead it is being scheduled by Linux kernel. For more information,
please see Issue#1036 and Issue#1183.

5.3 Board support

5.3.1 Q: How do I port OP-TEE to another platform?

• Start by reading the Porting guidelines.

• See the Presentations page. There might be some interesting information in the “LCU14-302 How To Port OP-
TEE To Another Platform” deck and video. Beware that the presentation is more than five years old, so even
though it is a good source, there might be parts that are not relevant any longer.

• As a good example for

– Armv8-A patch enabling OP-TEE support on a new device, please see the ZynqMP port that enabled
support for running OP-TEE on Xilinx UltraScale+ Zynq MPSoC. Besides that there are similar patches
for Juno port, Raspberry Pi3 port, HiKey port.

– ARMv7-A, please have a look at the Freescale ls1021a port, another example would be the TI DRA7xx
port.

5.4 Building

5.4.1 Q: I got build errors running latest, why?

• What did you try to build? Only optee_os? A full OP-TEE developer setup using QEMU, HiKey, RPi3, Juno
using repo? AOSP? OpenEmbedded? What we build on daily basis are the OP-TEE developer setups (see
Platforms supported by build.git) , but other builds like AOSP and OpenEmbedded are builds that we try from
time to time, but we have no CI/regression testing configured for those builds.

• By running latest instead of stable also comes with a risk of getting build errors due to version and/or interde-
pendency skew which can result in build error. Now, such issues most often affects running xtest and not the
building. If you however clean all gits and do a repo sync -d. Then we’re almost 100% sure you will get back
to a working state again, since as mentioned in next bullet, we build (and run xtest) on all QEMU on all patches
sent to OP-TEE.

• Every pull request in OP-TEE are tested on hardware (see Q: How are you testing OP-TEE?).

5.3. Board support 215

https://github.com/OP-TEE/optee_os/issues/1183
https://github.com/OP-TEE/optee_os/commit/dc57f5a0e8f3b502fc958bc64a5ec0b0f46ef11a
https://github.com/OP-TEE/optee_os/commit/90e7497e0480892e2c262cec64e6c47242d4db7f
https://github.com/OP-TEE/optee_os/commit/66d9cacf37e6bd4b0d86e7b32e4e5edefe8decfd
https://github.com/OP-TEE/optee_os/commit/d70e78c49fc9c63b2d37c596b7ad3cbd38f8e574
https://github.com/OP-TEE/optee_os/commit/85278139a8f914dddb36808861c86a472ecb0271
https://github.com/OP-TEE/optee_os/commit/9b5060cd92a19b4d114a1ce8a338b18424974037
https://github.com/OP-TEE/optee_os/commit/9b5060cd92a19b4d114a1ce8a338b18424974037

OP-TEE Documentation

5.4.2 Q: I got build errors running stable tag x.y.z, why?

• Stable releases are quite well tested both in terms of building for all supported platforms and running xtest on all
platforms, so if you cannot get that to build and run, then there is a great chance you have something wrong on
your side. All platforms that has been tested on a stable release can be found in CHANGELOG.md file. Having
that said, we do make mistakes on stable builds also from time to time.

5.4.3 Q: I get gcc XYZ or g++ XYZ compiler error messages?

• Most likely you’re trying to build OP-TEE using the regular x86 compiler and not the using the Arm toolchain.
Please install the Prerequisites and make sure you have gotten and installed the Arm toolchains as described at
the Toolchains page. (for additional information, please see Issue#846).

5.4.4 Q: I found this build.git, what is that?

• build is a git that is used in conjunction with the manifest to create full OP-TEE developer builds. It contains
helper makefiles that makes it easy to get OP-TEE up and running on the setups that are using repo.

5.4.5 Q: When running make from build.git it fails to download the toolchains?

• We try to stay somewhat up to date with running recent GCC versions. But just like everywhere else on the net
things moves around. In some cases like Issue#1195, the URL was changed without us noticing it. If you find
and fix such an issue, please send the fix as pull request and we will be happy to merge it.

5.4.6 Q: How can I build LLVM compiler-rt with BTI enabled ?

• Download the llvm-12 sources either from the releases page or you can checkout the “release/12.x” from llvm’s
github. (12 to match your chosen clang version).

• Make a build directory and cd into that.

• Run this cmake command to configure a standalone build of compiler-rt.

cmake -G Ninja <llvm sources>/compiler-rt/ -DCMAKE_BUILD_TYPE=Release \
-DLLVM_CONFIG_PATH=<path to>/llvm-config" \
-DCMAKE_CXX_FLAGS="-mbranch-protection=bti" \
-DCMAKE_C_FLAGS="-mbranch-protection=bti" \
-DCMAKE_ASM_FLAGS="-mbranch-protection=bti" \
-DCOMPILER_RT_BUILD_SANITIZERS=OFF \
-DCOMPILER_RT_BUILD_XRAY=OFF \
-DCOMPILER_RT_BUILD_LIBFUZZER=OFF \
-DCOMPILER_RT_BUILD_PROFILE=OFF \
-DCOMPILER_RT_BUILD_MEMPROF=OFF

Replace the path to llvm-config with the path to the clang install you want to use to compile. What this does is
enable BTI protection for c/cxx/assembly files (all the types in compiler-rt) and disable some parts of the build
that you wouldn’t need. If you need more components you can find cmake options for them in compiler-rt/
CMakeLists.txt.

Once you’ve built that you will find the libraries in <build folder>/lib/linux. You can verify that each
object in the builtins has the BTI marker by doing the following:

216 Chapter 5. Frequently Asked Questions

https://github.com/OP-TEE/optee_os/blob/master/CHANGELOG.md
https://github.com/OP-TEE/optee_os/issues/846
https://github.com/OP-TEE/optee_os/issues/1195

OP-TEE Documentation

/build-llvm-aarch64/lib/linux$ mkdir tmp && cd tmp
/build-llvm-aarch64/lib/linux/tmp$ cp ../libclang_rt.builtins-aarch64.a .
/build-llvm-aarch64/lib/linux/tmp$ ar x libclang_rt.builtins-aarch64.a
/build-llvm-aarch64/lib/linux/tmp$ rm libclang_rt.builtins-aarch64.a
/build-llvm-aarch64/lib/linux/tmp$ for i in *.o; do echo "$i:" &&
readelf -a $i | grep -i bti ; done

This should find a BTI line for every file.

$ for i in *.o; do echo "$i:" && readelf -a $i | grep -i bti ; done | wc -l
502

$ ls | wc -l
251

251 * 2 = 502 so all objects in the archive are bti compatible.

How you take this set of libraries and integrate it into your overall build system is up to you. The major thing to
note is that the name of the library does not change when you enable BTI protection

5.4.7 Q: How can I build GCC with BTI enabled?

• A GCC toolchain with BTI enabled can easily be built using Crosstool-NG:

$ git clone https://github.com/crosstool-ng/crosstool-ng
$ cd crosstool-ng
$./bootstrap && ./configure --enable-local && make
$./ct-ng aarch64-unknown-linux-gnu
$ cat >>.config <<_EOF_
CT_CC_GCC_EXTRA_CONFIG_ARRAY="--enable-standard-branch-protection"
CT_CC_GCC_CORE_EXTRA_CONFIG_ARRAY="--enable-standard-branch-protection"
EOF
$./ct-ng build.$(nproc)

The above commands will install the new toolchain in ~/x-tools/aarch64-unknown-linux-gnu. You can
then use this toolchain to build and run OP-TEE for QEMU v8 with full BTI support by adding a few arguments
to the make run command:

$ make CFG_CORE_BTI=y CFG_TA_BTI=y CFG_USER_TA_TARGETS=ta_arm64 \
AARCH64_CROSS_COMPILE=~/x-tools/aarch64-unknown-linux-gnu/bin/aarch64-linux-gnu- \
run

5.4.8 Q: What is the quickest and easiest way to try OP-TEE?

• That would be running it on QEMU on a local PC. To do that you would need to:

– Install the OP-TEE Prerequisites.

– Build for QEMU according to the instructions at QEMU v7.

– And Run xtest.

• By summarizing the above, you would need to:

5.4. Building 217

OP-TEE Documentation

$ sudo apt-get install [pre-reqs]
$ mkdir optee-qemu && cd optee-qemu
$ repo init -u https://github.com/OP-TEE/manifest.git
$ repo sync
$ cd build
$ make toolchains -j2
$ make run
QEMU console: (qemu) c
Normal world shell: # xtest

5.5 Certification and security reviews

5.5.1 Q: Will TrustedFirmware.org be involved in GlobalPlatform certifica-
tion/qualification?

• No, not as of now. Most often certification is performed using a certain software version and on a unique device.
I.e., it is the combination software + hardware that gets certified. This is typically something that the SoC or
OEM needs to do on their own.

• But it is worth mentioning that since OP-TEE is coming from a proprietary TEE solution that was GlobalPlatform
certified on some products in the past and we regularly have people from some member companies running the
extended test suite from GlobalPlatform we know that the gap to become GlobalPlatform certified/qualified isn’t
that big.

5.5.2 Q: Has any test lab been testing OP-TEE?

• Applus Laboratories have done some side-channel attack testing and fault injection testing on OP-TEE using the
HiKey 620 device. Their findings and fixes can be found at the Security Advisories page at optee.org.

• Riscure did a mini-audit of OP-TEE which generated a couple of patches (see PR#2745). The OP-TEE OS
Security Advisories page on Github will be updated with more information regarding that in the future.

5.5.3 Q: Where are listed security vulnerabilities addressed in OP-TEE

• Please see OP-TEE OS Security Advisories page.

5.5.4 Q: Have there been any code audit / code review done?

• Full audit? No! But in the past Linaro have been collaborating with Riscure trying to identify and fix potential
security issues. There has also been some companies that have done audits internally and they have then shared
the result with us and where relevant, we have created patches resolving the issues reported to us (see Q: Has
any test lab been testing OP-TEE?).

• Code review, yes! Every single patch going into OP-TEE has been reviewed in a pull request on GitHub. We
more or less have a requirement that every patch going into OP-TEE shall at least have one “Reviewed-by” tag
in the patch.

• Third party / test lab code review, no! Again some companies have reviewed internally and shared the result with
us, but other than that no (see related Q: Has any test lab been testing OP-TEE?)

218 Chapter 5. Frequently Asked Questions

http://www.appluslaboratories.com/en/
https://www.op-tee.org/security-advisories/
https://www.riscure.com
https://github.com/OP-TEE/optee_os/security/advisories
https://github.com/OP-TEE/optee_os/security/advisories
https://github.com/OP-TEE/optee_os/security/advisories

OP-TEE Documentation

5.6 Contribution

5.6.1 Q: How do I contribute?

• Please see the Contribute page.

5.6.2 Q: Where can I get help?

• Please see the Contact page.

5.6.3 Q: I’m new to OP-TEE but I would like to help out, what can I do?

• We always need help with code reviews, feel free to review any of the open OP-TEE OS Pull Requests. Please
also note that there could be open pull request in the other OP-TEE gits that needs reviews too.

• We always need help answering all the questions asked at OP-TEE OS Issues.

• If you want to try to solve a bug, please have a look at the OP-TEE OS Bugs or the OP-TEE OS Enhancements.

• Documentation tends to become obsolete if not maintained on regular basis. We try to do our best, but we’re not
perfect. Please have a look at optee_docs and try to update where you find gaps.

• Enable repo for the device in manifest and build (and also Platforms supported) currently not using repo.

• If you would like to implement a bigger feature, please reach out to us (see Contact) and we can discuss what is
most relevant to look into for the moment. If you already have an idea, feel free to send the proposal to us.

5.7 Interfaces

5.7.1 Q: Which API’s have been implemented in OP-TEE?

• GlobalPlatform (see GlobalPlatform API for more details).
– GlobalPlatform’s TEE Client API v1.0 (Errata and Precisions 2.0) specification

– GlobalPlatform’s TEE Internal Core API v1.3.1 specification.

– GlobalPlatform’s Secure Elements v1.0 (now deprecated, see git log).

– GlobalPlatform’s Socket API v1.0 (TCP and UDP, but not TLS).

• AOSP Keymaster (v3) and AOSP Gatekeeper (see AOSP for more details).

• Android Verified Boot 2.0 (AVB 2.0)

5.6. Contribution 219

https://github.com/OP-TEE/optee_os/pulls
https://github.com/OP-TEE/optee_os/issues
https://github.com/OP-TEE/optee_os/labels/bug
https://github.com/OP-TEE/optee_os/labels/enhancement
https://source.android.com/security/keystore
https://source.android.com/security/authentication/gatekeeper
https://android.googlesource.com/platform/external/avb/+/master/README.md

OP-TEE Documentation

5.7.2 Q: Which Linux kernel version supports <some OP-TEE feature>?

• The OP-TEE Linux driver is maintained in the official Linux tree at kernel.org under drivers/tee. This is normally
where you find the latest code. That being said, some platforms need minor customizations, such as device tree
updates, in order to be used in the OP-TEE developer builds (manifest files). That is why the linaro-swg kernel
branch optee is used in the manifest files. It is rebased onto upstream on a regular basis.

• Older kernels may lack support for newer OP-TEE features. In order to assess in which kernel version some
commit has been introduced, you may use the following shell command:

$ cd linux
$ git log --no-merges --oneline drivers/tee | \
while read hash sub; do \
name=$(git name-rev --tags --name-only $hash | sed 's/\([^~]*\)~.*/[\1]/'); \
printf "%-20s %s %s\n" "$name" "$hash" "$sub"; \

done

The output looks like this:

[v5.12-rc4] 6417f03132a6 module: remove never implemented MODULE_SUPPORTED_
→˓DEVICE
[v5.12-rc1-dontuse] 67bc80975279 optee: simplify i2c access
[v5.12-rc1-dontuse] 958567600517 tee: optee: remove need_resched() before cond_
→˓resched()
[v5.12-rc1-dontuse] 617d8e8b347e optee: sync OP-TEE headers
[v5.12-rc1-dontuse] bed13b5fc4f3 tee: optee: fix 'physical' typos
[v5.12-rc1-dontuse] fda90b29e271 drivers: optee: use flexible-array member instead␣
→˓of zero-length array
[v5.11-rc6] dcb3b06d9c34 tee: optee: replace might_sleep with cond_resched
[v5.10-rc6] 853735e40424 optee: add writeback to valid memory type
[v5.11-rc1] a24d22b225ce crypto: sha - split sha.h into sha1.h and sha2.h
[v5.10-rc5] be353be27874 tee: amdtee: synchronize access to shm list
...

5.8 Hardware and peripherals

5.8.1 Q: Can I use my own hardware IP for crypto acceleration?

• Yes, OP-TEE has a Crypto Abstraction Layer (see Cryptographic implementation that was designed mainly
to make it easy to add support for hardware crypto acceleration. There you will find information about the
abstraction layer itself and what you need to do to be able to support new software/hardware “drivers” in OP-
TEE.

220 Chapter 5. Frequently Asked Questions

https://kernel.org/
https://github.com/linaro-swg/linux

OP-TEE Documentation

5.9 License

5.9.1 Q: Under what license is OP-TEE released?

• The software is mostly provided under the BSD 2-Clause license.

• The TEE kernel driver is released under GPLv2 for obvious reasons.

• xtest (optee_test) uses BSD 2-Clause for code running in secure world (Trusted Applications etc) and GPLv2 for
code running in normal world (client code).

5.9.2 Q: GlobalPlatform click-through license

• Since OP-TEE is a GlobalPlatform based TEE which implements the APIs as specified by GlobalPlatform one
has to accept, the click-through license which is presented when trying to download the GlobalPlatform API
specifications before start using OP-TEE.

5.9.3 Q: I’ve modified OP-TEE by using code with non BSD 2-Clause license, will
you accept it?

• That is something we deal with case by case. But as a general answer, if it does not contaminate the BSD 2-Clause
license we will accept it. Reach out to us (see Contact) and we will take it from there.

5.10 Promotion

5.10.1 Q: I want to get my company logo on op-tee.org, how?

• If your company has done significant contributions to OP-TEE, then please Contact us and we will do our best
to include your company. Pay attention to that we will review this on regular basis and inactive supporting
companies might be removed in the future again.

5.11 Security vulnerabilities

5.11.1 Q: I have a found a security flaw in OP-TEE, how can I disclose it with you?

• Please see the Contact page.

5.9. License 221

http://opensource.org/licenses/BSD-2-Clause

OP-TEE Documentation

5.12 Source code

5.12.1 Q: Where is the source code?

• It is located on GitHub under the project OP-TEE and linaro-swg.

5.12.2 Q: Where do I download the test suite called xtest?

• All the source code for that can be found in the git called optee_test.

• The Extended test (GlobalPlatform tests) can be purchased separately.

5.12.3 Q: Where is the Linux kernel TEE driver?

• You can find both the generic TEE framework including the OP-TEE driver included in the official Linux kernel
project since v4.12. Having that said, we “buffer up” pending patches on a our Linux kernel TEE framework
branch. I.e., that is where we keep new features being developed for OP-TEE. In the long run we aim to completely
stop using our own branch and just send all patches to the official Linux kernel tree directly. But as of now we
cannot do that.

5.13 Testing

5.13.1 Q: How are you testing OP-TEE?

• There is a test suite called xtest that tests the complete TEE-solution to ensure that the communication between
all architectural layers is working as it should. The test suite also tests the majority of the GlobalPlatform TEE
Internal Core API. It has close to 50,000 and ever increasing test cases, and is also extendable to include the
official GlobalPlatform test suite (see Extended test (GlobalPlatform tests)).

• Every pull request in OP-TEE are built for a multitude of different platforms automatically using Azure DevOps
pipelines and IBART. Please have a look there to see whether it failed building on the platform you’re using
before submitting any issue about build errors.

• For more information see optee_test.

5.14 Trusted Applications

5.14.1 Q: How do I write a Trusted Application (TA)?

• Have a look at the Trusted Applications page as well as the optee_examples page. Those provides guidelines and
examples on how to implement basic Trusted Applications.

• If you want to see more advanced uses cases of Trusted Applications, then we encourage that you have a look at
the Trusted Applications optee_test.

222 Chapter 5. Frequently Asked Questions

https://github.com/OP-TEE
https://github.com/linaro-swg
https://dev.azure.com/OPTEE/optee_os
https://dev.azure.com/OPTEE/optee_os
https://optee.mooo.com:5000

OP-TEE Documentation

5.14.2 Q: How do I link a library into a Trusted Application?

• See the example in sub.mk directives.

• Also see Issue#280, Issue#601, Issue#901, Issue#1003.

5.14.3 Q: Where should I put my compiled Trusted Application on the device?

• /lib/optee_armtz, that is the default location where tee-supplicant will look for Trusted Applications.

5.14.4 Q: What is a Pseudo TA and how do I write one?

• A Pseudo TA is an OP-TEE firmware service offered through the generic API used to invoke Trusted Applica-
tions. Pseudo TA interface and services all runs in TEE kernel / core context. I.e., it will have access to the same
functions, memory and hardware etc as the TEE core itself. If we’re talking ARMv8-A it is running in S-EL1.

5.14.5 Q: Are Pseudo user space TAs supported?

• No!

5.14.6 Q: Can a static TA Open/Invoke dynamic TA?

• Yes, for a longer discussion see Issue#967, Issue#1085, Issue#1132.

5.14.7 Q: How can I extend the GlobalPlatform Internal Core API?

• You may develop your own “Pseudo TA”, which is part of the core (see Q: What is a Pseudo TA and how do I
write one? for more information about the Pseudo TA).

5.14.8 Q: How are Trusted Applications verified?

• Please see the section Trusted Application private/public keypair in the Porting guidelines.

• Alternatively one can also build a Trusted Application and embed its raw binary content into the OP-TEE
firmware binary. At runtime, if invoked, the Trusted Application will be loaded from the OP-TEE firmware
image instead of being fetched from the normal world and authenticated in the secure world (see Early TA for
more information).

5.14.9 Q: Is multi-core TA supported?

• Yes, you can have two or more TAs running simultaneously. Please see also Issue#1194.

5.14. Trusted Applications 223

https://github.com/OP-TEE/optee_os/issues/280
https://github.com/OP-TEE/optee_os/issues/601
https://github.com/OP-TEE/optee_os/issues/901
https://github.com/OP-TEE/optee_os/issues/1003
https://github.com/OP-TEE/optee_os/issues/967
https://github.com/OP-TEE/optee_os/issues/1085
https://github.com/OP-TEE/optee_os/issues/1132
https://github.com/OP-TEE/optee_os/issues/1194

OP-TEE Documentation

5.14.10 Q: Is multi-threading supported in a TA?

• No, there is no such concept as pthreads or similar. I.e, you cannot spawn thread from a TA. If you need to run
tasks in parallel, then you should probably look into running two TAs or more simultaneously and then let them
communicate with each other using the TA2TA interface.

5.14.11 Q: How can I use or call OP-TEE from native Android (apk) applications?

• Use the Java Native Interface (JNI).

• First get familiar with sample_hellojni.html and make sure you can run the sample. After that, replace the C-side
Implementation with for example hello_world or one of the other examples in optee_examples.

Note: Note that hello_world and other binaries in optee_examples are built as executables, and have to be
modified to be built as a .so shared library instead so that it can be loaded by the Java-side Implementation.

• Note that *.apk apps by default have no access to the TEE driver. See Issue#903 for details. The workaround
is to disable SELinux before launching any *.apk app that calls into OP-TEE. The solution is to create/write
SELinux domains/rules to allow any required access, but since this is not a TEE-related issue, it is left as an
exercise for the users.

• For a reference implementation contributed by one of our community users, see
optee_android_hello_world_example.

5.14.12 Q: I’ve heard that there is a Widevine and PlayReady TA, how do I get ac-
cess?

• TrustedFirmware have no such implementation, but Linaro do have reference implementations for that that they
share with their members who have signed the WMLA and NDA/MLA with Google and Microsoft. So the
advice is to reach out to Linaro if you have questions about that.

224 Chapter 5. Frequently Asked Questions

http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html
https://developer.android.com/ndk/samples/sample_hellojni.html
https://github.com/OP-TEE/optee_os/issues/903
https://github.com/rafagameiro/optee_android_hello_world_example

	Getting started
	About OP-TEE
	OP-TEE components
	History

	Coding standards
	Running checkpatch

	Contribute
	Developer Certificate of Origin
	GitHub
	Setting up an account
	Forking
	Creating pull requests
	Commit messages
	Review feedback
	Finalizing your contribution

	Contact
	GitHub
	Email
	IRC
	Vulnerability reporting
	Core Team

	License headers
	New source files
	Pre-existing or imported files

	Platforms supported
	Presentations
	Releases
	Cadence
	Release dates

	Changelog
	Versioning schema
	Release procedure
	tl;dr
	Long version

	Architecture
	Core
	Interrupt handling
	Use cases of world context switch
	Core exception vectors
	Native and foreign interrupts
	Normal World invokes OP-TEE OS using SMC
	Deliver non-secure interrupts to Normal World
	Deliver secure interrupts to Secure World
	Trusted thread scheduling
	Core handlers for native interrupts

	Notifications
	Memory objects
	MMU
	Translation tables
	Short-descriptor translation table format
	Long-descriptor translation table format

	Page table cache
	Without paging (CFG_WITH_PAGER=n)
	With paging enabled (CFG_WITH_PAGER=y)
	With paging of user TA enabled (CFG_PAGED_USER_TA=y)

	Switching to user mode
	Switching to normal world

	Pager
	Secure memory
	Backing store
	Partitioning of memory
	Partitioning of the binary
	Initializing the pager
	Assign pageable areas
	Assign physical pages

	Invocation
	Data structures
	struct tee_pager_area
	struct fobj
	struct tee_pager_pmem

	Paging of user TA
	Paging shared secure memory

	Stacks
	Boot
	Normal entry
	Normal exit
	RPC exit
	Foreign interrupt exit
	Resume entry
	Syscall

	Shared Memory
	Contiguous shared buffers
	Noncontiguous shared buffers
	Shared Memory Chunk Allocation
	Registering shared memory
	SMC based OP-TEE MSG ABI
	FF-A based OP-TEE MSG ABI

	Using shared memory

	SMC
	SMC Interface
	SMC communication

	Thread handling
	Synchronization primitives

	Cryptographic implementation
	Overview
	[1] The TEE Cryptographic Operations API
	[2] The crypto services
	[3] crypto_*()
	Public/private key format
	[4] LibTomCrypt
	Add a new software based crypto implementation
	[5] Support for crypto IC
	NXP SE05X Family of Secure Elements

	Device Tree
	Secure and Non-Secure Device Trees
	Generic boot and DTBs
	Early boot external device tree
	Early boot device tree overlay
	Embedded Secure Device Tree
	OP-TEE Specific Bindings

	Device tree bindings
	Google Widevine device-tree bindings

	File structure
	Top level directories
	core/
	core/arch/arm/
	lib/
	ta/

	GlobalPlatform API
	Introduction
	TEE Client API
	TEE Contexts
	TEE Sessions
	TEE Shared memory
	TEE Client API example / usage

	TEE Internal Core API
	Examples / usage

	Extensions
	Cache Maintenance Support
	PKCS#1 v1.5 RSASSA without hash OID
	Concat KDF
	HKDF
	PBKDF2
	Loadable plugins framework

	Libraries
	libutils
	libutee
	libmbedtls
	libunw
	libdl
	Static vs Shared libraries

	Porting guidelines
	Add a new platform
	core/arch/arm
	Official board support in OP-TEE?

	Hardware Unique Key
	Secure Clock
	Root and Chain of Trust
	Hardware Crypto IP
	Random Number Generator
	Power Management / PSCI
	Memory firewalls / TZASC
	Trusted Application private/public keypair
	Platform ports

	Secure boot
	Armv8-A - Using the authentication framework in TF-A
	Armv7-A systems

	Secure storage
	Background
	REE FS Secure Storage
	Basic File Operation Flow
	GlobalPlatform Trusted Storage Requirement
	TEE File Structure in Linux File System

	Key Manager
	Secure Storage Key (SSK)
	Trusted Application Storage Key (TSK)
	File Encryption Key (FEK)

	Hash Tree
	Meta Data Encryption Flow
	Block Data Encryption Flow

	Atomic Operation
	RPMB Secure Storage
	The Secure Storage API
	The RPMB filesystem
	Device access
	Security considerations
	Encryption
	REE FS hash state

	Important caveats
	References

	Subkeys
	Trusted Applications
	Pseudo Trusted Applications
	User Mode Trusted Applications
	TA locations
	Early TA
	REE filesystem TA
	REE-FS TA rollback protection
	REE-FS TA formats
	REE-FS TA header structure
	REE-FS TA binary formats
	Verifying with Subkeys
	Loading REE-FS TA

	Secure Storage TA

	Loading and preparing TA for execution
	TA Properties
	GlobalPlatform Properties
	Single Instance
	Multi-session
	Keep Alive
	Heap Size
	Stack Size

	Property Extensions
	Secure Data Path Flag
	Cache maintenance Flag
	Deprecated Property Flags

	Virtualization
	Configuration
	Requirements for hypervisor
	Limitations
	Platforms support
	Static VMs guest count and memory allocation
	Sharing hardware resources and PTAs
	No compatibility with “normal” mode
	Implementation details

	SPMC
	SPMC Responsibilities
	Secure Partitions
	Secure Partition formats
	OP-TEE specific ELF format
	SPMC agnostic flat binary format

	SPMC Program Flow
	Starting SPs
	SP message handling
	Running and exiting SPs
	RxTx buffer managment

	FF-A compliance
	Legend
	Partition boot protocol
	Supported partition manifest fields
	Limitations

	Supported FF-A interfaces
	Limitations

	Configuration
	SPMC config options
	SP loading mechanism
	Embedded SP
	FIP SP

	Arm Security Extensions
	Branch Target Identification
	How to enable BTI for OP-TEE core
	How to enable BTI for TA’s

	Platform documentation
	NXP
	Security Disclaimer

	Build and run
	Prerequisites
	Device specific information
	AMD-Xilinx Versal ACAP VCK190
	Supported boards
	Setting up the toolchain
	Configuring and building for VCK190
	JTAG boot to U-Boot shell
	SD card creation and boot

	DeveloperBox
	Build instructions

	FVP
	Build instructions

	HiKey 620
	Multiple sources for HiKey and OP-TEE instructions?
	Supported HiKey boards
	UART adapter board
	Build instructions
	Recovery

	HiKey 960
	Supported HiKey960 boards
	UART adapter board
	Build instructions
	Recovery
	External guide

	Juno
	Regular build
	Deploy files on the device
	Update the flash layout
	GlobalPlatform testsuite support
	Example

	GCC > 5.x support

	NUVOTON
	Build instructions
	Pre-requirements:
	Build process:

	QEMU v7
	Build instructions
	Consoles
	Host-Guest folder sharing
	Networking
	GDB - Normal world
	GDB - Secure world
	TEE core debugging

	QEMU v8
	Build instructions

	ROCK Pi 4
	Supported ROCK Pi 4 boards
	UART
	Build instructions

	Raspberry Pi 3
	Disclaimer
	What is expected to work?
	Buildroot
	HDMI
	NFS
	Random packages
	Raspbian
	Secure boot
	TFTP
	UART
	Wi-Fi

	What versions of Raspberry Pi will work?
	Boot sequence
	Build instructions
	NFS boot
	Configure NFS
	Prepare files to be shared
	uboot.env configuration
	Change uboot.env.txt
	Update u-boot.env from U-Boot console
	Boot up with NFS

	JTAG
	Change config.txt directly
	Rebuild and untar
	JTAG/RPi3 cable

	UART/RPi3 cable
	OpenOCD
	Build OpenOCD
	OpenOCD RPi3 configuration file
	Running OpenOCD
	Use GDB
	Debug session example

	STM32MP1
	Supported boards
	Build instructions

	Texas Instruments SoCs
	Regular build
	Booting the device
	SD Card boot

	Zynq MPSoC
	Supported boards
	Boot Firmware
	Build instructions
	Petalinux build instructions
	Booting the device
	SD Card boot

	AOSP
	Prerequisites
	Build instructions
	Flashing the image
	Partial flashing
	Experimental prebuilts
	Running xtest
	Running VTS Gtest unit for Gatekeeper and Keymaster (Optional)
	Enable adb over USB
	Known issues

	Linux kernel TEE framework
	OP-TEE gits
	build
	git location
	Why repo?
	Root filesystem
	How do I build using AOSP / OpenEmbedded?
	Platforms supported by build.git
	Manifests
	Current version
	Stable releases
	Stable releases prior to OP-TEE v3.1 (v1.0.0 to v3.0.0)
	Stable releases prior to OP-TEE v3.9 (3.1.0 to 3.8.0)

	Get and build the solution
	Step 1 - Prerequisites
	Step 2 - Install Android repo
	Step 3 - Get the source code
	Step 4 - Get the toolchains
	Step 5 - Build the solution
	Step 6 - Flash the device
	Step 7 - Boot up the device
	Step 8 - Load tee-supplicant
	Step 9 - Run xtest

	Tips and Tricks
	Reference existing project to speed up repo sync
	Use ccache

	Build stable releases v1.0.0 to v3.0.0
	Build stable releases 3.1.0 to 3.8.0
	manifest
	git location
	Remotes
	Sections
	Project XML elements
	Alphabetic order
	Additional XML attributes
	Alignment of XML attributes
	When to use clone-depth=”1”?
	Spaces or tabs?
	Example

	optee_client
	git location
	License
	Build instructions
	Configure the toolchain
	Clone optee_client
	Build using CMake
	Build using GNU Make

	Compiler flags
	Coding standards

	optee_docs
	git location
	Install Sphinx
	Build optee_docs
	General guidelines
	Linking
	Internal links
	compiler.rst example
	toolchain.rst example
	General recommendation for OP-TEE internal linking
	rst files
	Sections, chapters

	optee_examples
	git location
	License
	Build instructions
	Configure the toolchain
	Build the dependencies
	Clone optee_examples
	Build using GNU Make
	Host application
	Trusted Application

	Coding standards
	Example applications
	acipher
	aes
	hello_world
	hotp
	Client (OP-TEE) / Server solution
	Sequence diagram - Client / Server
	Client / Server (OP-TEE)?

	random
	secure_storage

	Further reading

	optee_os
	git location
	License
	Build instructions
	Configure the toolchain
	Clone optee_os
	Build using GNU Make
	Build using LLVM/clang

	Coding standards
	Build system
	Choosing the build target
	ARCH - CPU architecture
	CROSS_COMPILE
	PLATFORM / PLATFORM_FLAVOR
	O - output directory

	Configuration and flags
	Linker scripts
	Source files
	Compiler flags
	Include directories
	Configuration variables
	Boolean configuration variables
	Non-boolean configuration variables
	The ‘force’ macro
	There are only two ways…
	Configuration dependencies

	Import branches

	optee_test
	git location
	License
	Build instructions
	Extended test (GlobalPlatform tests)
	Run xtest
	xtest - default
	xtest - all
	xtest - single
	xtest - family
	xtest - benchmark
	xtest - regression
	xtest - aes-perf
	xtest - sha-perf

	Coding standards

	Toolchains
	Download/install
	Direct download
	Using build.git

	Export PATH
	LLVM / Clang
	Using build.git

	Trusted Applications
	TA Mandatory files
	TA file layout example

	TA Makefile Basics
	Required variables
	Optional variables
	Example Makefile
	sub.mk directives

	Android Build Environment
	TA Mandatory Entry Points
	TA Properties
	Example of a property header file

	Checking TA parameters
	Identifying TA’s client
	Signing of TAs
	Offline Signing of TAs

	StandAloneMM
	EDK2 Build instructions
	OP-TEE Build instructions
	U-Boot Build instructions

	OP-TEE with Rust
	Clone OP-TEE repo
	Compile Rust examples
	Development Documents

	Linux userland integration
	PKCS#11 driver

	Debugging techniques
	Abort dumps / call stack
	Ftrace (function tracing)
	Usage
	Typical output

	Gprof
	Usage
	Implementation

	Frequently Asked Questions
	Abbreviations
	Architecture
	Q: Which platforms/architectures are supported?
	Q: Are 32-bit as well as 64-bit support?
	Q: Does OP-TEE support mixed-mode, i.e., both AArch32 and AArch64 Trusted Applications on top of an AArch64 core?
	Q: What’s the maximum size for heap and stack? Can it be changed?
	Q: What is the size of OP-TEE itself?
	Q: Can NEON optimizations be done in OP-TEE?
	Q: Can I use C++ libraries in OP-TEE?
	Q: Would using malloc() in OP-TEE give physically contiguous memory?
	Q: Can I limit what CPUs / cores OP-TEE runs on?
	Q: How is OP-TEE being scheduled?

	Board support
	Q: How do I port OP-TEE to another platform?

	Building
	Q: I got build errors running latest, why?
	Q: I got build errors running stable tag x.y.z, why?
	Q: I get gcc XYZ or g++ XYZ compiler error messages?
	Q: I found this build.git, what is that?
	Q: When running make from build.git it fails to download the toolchains?
	Q: How can I build LLVM compiler-rt with BTI enabled ?
	Q: How can I build GCC with BTI enabled?
	Q: What is the quickest and easiest way to try OP-TEE?

	Certification and security reviews
	Q: Will TrustedFirmware.org be involved in GlobalPlatform certification/qualification?
	Q: Has any test lab been testing OP-TEE?
	Q: Where are listed security vulnerabilities addressed in OP-TEE
	Q: Have there been any code audit / code review done?

	Contribution
	Q: How do I contribute?
	Q: Where can I get help?
	Q: I’m new to OP-TEE but I would like to help out, what can I do?

	Interfaces
	Q: Which API’s have been implemented in OP-TEE?
	Q: Which Linux kernel version supports <some OP-TEE feature>?

	Hardware and peripherals
	Q: Can I use my own hardware IP for crypto acceleration?

	License
	Q: Under what license is OP-TEE released?
	Q: GlobalPlatform click-through license
	Q: I’ve modified OP-TEE by using code with non BSD 2-Clause license, will you accept it?

	Promotion
	Q: I want to get my company logo on op-tee.org, how?

	Security vulnerabilities
	Q: I have a found a security flaw in OP-TEE, how can I disclose it with you?

	Source code
	Q: Where is the source code?
	Q: Where do I download the test suite called xtest?
	Q: Where is the Linux kernel TEE driver?

	Testing
	Q: How are you testing OP-TEE?

	Trusted Applications
	Q: How do I write a Trusted Application (TA)?
	Q: How do I link a library into a Trusted Application?
	Q: Where should I put my compiled Trusted Application on the device?
	Q: What is a Pseudo TA and how do I write one?
	Q: Are Pseudo user space TAs supported?
	Q: Can a static TA Open/Invoke dynamic TA?
	Q: How can I extend the GlobalPlatform Internal Core API?
	Q: How are Trusted Applications verified?
	Q: Is multi-core TA supported?
	Q: Is multi-threading supported in a TA?
	Q: How can I use or call OP-TEE from native Android (apk) applications?
	Q: I’ve heard that there is a Widevine and PlayReady TA, how do I get access?

