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CHAPTER 1

Getting started

This contains general information about OP-TEE, how to get in contact, how to contribute, how to report security
issues etc. It is intended for people who are new to OP-TEE.

1.1 About OP-TEE

OP-TEE is a Trusted Execution Environment (TEE) designed as companion to a non-secure Linux kernel running on
Arm; Cortex-A cores using the TrustZone technology. OP-TEE implements TEE Internal Core API v1.1.x which is the
API exposed to Trusted Applications and the TEE Client API v1.0, which is the API describing how to communicate
with a TEE. Those APIs are defined in the GlobalPlatform API specifications.

The non-secure OS is referred to as the Rich Execution Environment (REE) in TEE specifications. It is typically a
Linux OS flavor as a GNU/Linux distribution or the AOSP.

OP-TEE is designed primarily to rely on the Arm TrustZone technology as the underlying hardware isolation mech-
anism. However, it has been structured to be compatible with any isolation technology suitable for the TEE concept
and goals, such as running as a virtual machine or on a dedicated CPU.

The main design goals for OP-TEE are:

• Isolation - the TEE provides isolation from the non-secure OS and protects the loaded Trusted Applications
(TAs) from each other using underlying hardware support,

• Small footprint - the TEE should remain small enough to reside in a reasonable amount of on-chip memory as
found on Arm based systems,

• Portability - the TEE aims at being easily pluggable to different architectures and available HW and has to
support various setups such as multiple client OSes or multiple TEEs.

1.1.1 OP-TEE components

OP-TEE is divided in various components:

• A secure privileged layer, executing at Arm secure PL-1 (v7-A) or EL-1 (v8-A) level.
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• A set of secure user space libraries designed for Trusted Applications needs.

• A Linux kernel TEE framework and driver (merged to the official tree in v4.12).

• A Linux user space library designed upon the GlobalPlatform TEE Client API specifications.

• A Linux user space supplicant daemon (tee-supplicant) responsible for remote services expected by the TEE
OS.

• A test suite (xtest), for doing regression testing and testing the consistency of the API implementations.

• An example git containing a couple of simple host- and TA-examples.

• And some build scripts, debugging tools to ease its integration and the development of Trusted Applications and
secure services.

These components are available from several git repositories. The main ones are build, optee_os, optee_client,
optee_test, optee_examples and the Linux kernel TEE framework.

1.1.2 History

OP-TEE was initially developed by ST-Ericsson (and later on by STMicroelectronics), but this was before OP-TEE got
the name “OP-TEE” and was turned into an open source project. Back then it was a closed source and a proprietary
TEE project. In 2013, ST-Ericsson obtained GlobalPlatform’s compliance qualification with this implementation,
proving that the APIs were behaving as expected according to the GlobalPlatform specifications.

Later on the same year (2013) Linaro was about to form Security Working Group (SWG) and one of the initial key
tasks for SWG was to work on an open source TEE project. After talking to various TEE vendors Linaro ended up
working with STMicroelectronics TEE project. But before being able to open source it there was a need to replace
some proprietary components with open source components. For a couple of months Linaro/SWG together with
engineers from STMicroelectronics re-wrote major parts (crypto library, secure monitor, build system etc), cleaned up
the project by enforcing Coding standards, running checkpatch etc.

June 12 2014 was the day when OP-TEE was “born” as an open source project. At that day the OP-TEE team pushed
the first commit to GitHub. A bit after this Linaro also made a press release about this. That press release contains a
bit more information. At the first year as an open source project it was owned by STMicroelectronics but maintained
by Linaro and STMicroelectronics. In 2015 there was an ownership transfer of OP-TEE from STMicroelectronics
to Linaro and since then it has been Linaro who is the primary owner and maintainer of the project. But for the
maintenance part, it has become a shared responsibility between Linaro, Linaro members and other companies who
are using OP-TEE.

1.2 Coding standards

In this project we are trying to adhere to the same coding convention as used in the Linux kernel (see CodingStyle).
We achieve this by running checkpatch from Linux kernel. However there are a few exceptions that we had to make
since the code also follows GlobalPlatform standards. The exceptions are as follows:

1. CamelCase for GlobalPlatform types is allowed.

2. We do not run checkpatch on third party code that we might use in this project, such as LibTomCrypt, MPA,
newlib etc. The reason for that and not doing checkpatch fixes for third party code is because we would probably
deviate too much from upstream and therefore it would be hard to rebase against those projects later on and we
don’t expect that it is easy to convince other software projects to change coding style.

3. All variables shall be initialized to a well known value in one or another way. The reason for that is that we
have had potential security issues in the past that originated from not having variables initialized with a well
defined value. We have also investigate various toolchain flags that are supposed to help out finding uninitialized
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variables. Unfortunately our conclusion is that you cannot trust the compilers here, since there are corner cases
where compilers cannot reliably give a warning.

Variables are initialized according to these general guidelines:

• Scalars (and types like time_t which are standardized as scalars) are initialized with 0, unless another value
makes more sense.

• For optee_client we need maximum portability. So only initialize struct types (and pthread_t) with
memset() unless there is a good reason not to do so.

• For the rest of the gits we assume that a recent version of GCC or Clang is used so we initialize structs with {
} in order to avoid the more clumsy memset() procedure. Types like pthread_t which can be a scalar or a
composite type are initialized with memset() in order to minimize the amount of future headache.

Regarding the checkpatch tool, it is not included directly into this project. Please use checkpatch.pl from the Linux
kernel git in combination with the local checkpatch script.

1.3 Contribute

Contributions to OP-TEE are managed by the OP-TEE Core Team and anyone can contribute to OP-TEE as long as it
is understood that it will require a Signed-off-by tag from the one submitting the patch(es). The Signed-off-by tag is
a simple line at the end of the explanation for the patch, which certifies that you wrote it or otherwise have the right
to pass it on as an open source patch (see below). You thereby assure that you have read and are following the rules
stated in the Developer Certificate of Origin as stated below.

1.3.1 Developer Certificate of Origin

Developer Certificate of Origin
Version 1.1

Copyright (C) 2004, 2006 The Linux Foundation and its contributors.
660 York Street, Suite 102,
San Francisco, CA 94110 USA

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Developer's Certificate of Origin 1.1

By making a contribution to this project, I certify that:

(a) The contribution was created in whole or in part by me and I
have the right to submit it under the open source license
indicated in the file; or

(b) The contribution is based upon previous work that, to the best
of my knowledge, is covered under an appropriate open source
license and I have the right under that license to submit that
work with modifications, whether created in whole or in part
by me, under the same open source license (unless I am
permitted to submit under a different license), as indicated
in the file; or

(continues on next page)
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(continued from previous page)

(c) The contribution was provided directly to me by some other
person who certified (a), (b) or (c) and I have not modified
it.

(d) I understand and agree that this project and the contribution
are public and that a record of the contribution (including all
personal information I submit with it, including my sign-off) is
maintained indefinitely and may be redistributed consistent with
this project or the open source license(s) involved.

We have borrowed this procedure from the Linux kernel project to improve tracking of who did what, and for legal
reasons.

To sign-off a patch, just add a line in the commit message saying:

Signed-off-by: Random J Developer <random@developer.example.org>

Use your real name or on some rare cases a company email address, but we disallow pseudonyms or anonymous
contributions.

1.3.2 GitHub

This section describes how to use GitHub for OP-TEE development and contributions.

Setting up an account

You do not need to own a GitHub account in order to clone a repository. But if you want to contribute, you need to
create an account at GitHub. Note that a free plan is sufficient to collaborate.

SSH is recommended to access your GitHub repositories securely and without supplying your username and password
each time you pull or push something. To configure SSH for GitHub, please refer to Connecting to GitHub with SSH.

Forking

Only owners of the OP-TEE projects have write permissions to the git repositories of those projects. Contributors
should fork OP-TEE/*.git and/or linaro-swg/*.git into their own account, then work on this forked repos-
itory. The complete documentation about forking can be found at fork a repo.

Creating pull requests

When you want to submit a patch to the OP-TEE project, you are supposed to create a pull request to the git where
you forked your git from. How that is done using GitHub is explained at the GitHub pull request page.

Commit messages

• The subject line should explain what the patch does as precisely as possible. It is usually prefixed with key-
words indicating which part of the code is affected, but not always. Avoid lines longer than 80 characters.

• The commit description should give more details on what is changed, and explain why it is done. Indication
on how to enable and use some particular feature can be useful, too. Try to limit line length to 72 characters,
except when pasting some error message (compiler diagnostic etc.). Long lines are allowed to accommodate
URLs, too (preferably use URLs in a Fixes: or Link: tag).
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• The commit message must end with a blank line followed by some tags, including your Signed-off-by:
tag. By applying such a tag to your commit, you are effectively declaring that your contribution follows the
terms stated by Developer Certificate of Origin (in the DCO section there is also a complete example).

• Other tags may be used, such as:

– Tested-by: Test R <test@r.com>

– Acked-by: Acke R <acke@r.com>

– Suggested-by: Suggeste R <suggeste@r.com>

– Reported-by: Reporte R <reporte@r.com>

• When citing a previous commit, whether it is in the text body or in a Fixes: tag, always use the format shown
above (12 hexadecimal digits prefix of the commit SHA1, followed by the commit subject in double quotes and
parentheses).

Review feedback

It is very likely that you will get review comments from other OP-TEE users asking you to fix certain things etc. When
fixing review comments, do:

• Add fixup patches on top of your existing branch. Do not squash and force push while fixing review comments.

• When all comments have been addressed, just write a simple messages in the comments field saying something
like “All comments have been addressed”. By doing so you will notify the maintainers that the fix might be
ready for review again.

Finalizing your contribution

Once you and reviewers have agreed on the patch set, which is when all the people who have commented on the pull
request have given their Acked-by: or Reviewed-by:, you need to consolidate your commits:

Use git rebase -i to squash the fixup commits (if any) into the initial ones. For instance, suppose the git log
--oneline for you contribution looks as follows when the review process ends:

<sha1-commit4> [Review] Do something
<sha1-commit3> [Review] Do something
<sha1-commit2> Do something else
<sha1-commit1> Do something

Then you would do:

$ git rebase -i <sha1-commit1>^

Edit the commit script so it looks like so:

pick <sha1-commit1> Do something
squash <sha1-commit3> [Review] Do something
squash <sha1-commit4> [Review] Do something
pick <sha1-commit2> Do something else

Add the proper tags (Acked-by: ..., Reviewed-by: ..., Tested-by: ...) to the commit mes-
sage(s) for each and every commit as provided by the people who reviewed and/or tested the patches.

1.3. Contribute 7
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Hint: git commit --fixup=<sha1-of-commit-to-fix> and later on git rebase -i
--autosquash <sha1-of-first-commit-in-patch-serie>^1 is pretty convenient to use when
adding review patches and doing the final squash operation.

Once rebase -i is done, you need to force-push (-f) to your GitHub branch in order to update the pull request
page.

$ git push -f <my-remote> <my-branch>

After completing this it is the project maintainers job to apply your patches to the master branch.

1.4 Contact

1.4.1 GitHub

Our preference is to use GitHub for communication. The reason for that is that it is an open source project, so there
should be no real reason to hide discussions from other people. GitHub also makes it possible for anyone to chime
in into discussion etc. So besides sending patches as pull requests on GitHub we also encourage people to use the
“issues” to report bugs, give suggestions, ask questions etc.

Please try to use the “issues” in the relevant git. I.e., if you want to discuss something related to optee_client, then use
“issues” at optee_client and so on. If you have a general question etc about OP-TEE that doesn’t really belong to a
specific git, then please use issues at optee_os in that case.

1.4.2 Email

You can reach the Core Team by sending an email to <op-tee[at]linaro[dot]org>. However note that the
team consist of engineers from different companies, i.e, it is not just Linaro engineers behind that email address.

From time to time we are also using the Tee-dev mailinglist <tee-dev[at]lists[dot]linaro[dot]org>.
It has mostly been used when we have discussed and sent patches related to the TEE framework in Linux kernel.

For pure Linux kernel patches, please use the appropriate Linux kernel mailinglist, basically run the
get_maintainer.pl script in the Linux kernel tree to figure out where to send your patches.

$ cd <linux-kernel>
$ ./scripts/get_maintainer.pl drivers/tee/

1.4.3 IRC

Some of the OP-TEE developers can be reached at Freenode (chat.freenode.net) at channel
#linaro-security. Having that said, the activity there is a bit limited, so it is probably not the best place to
discuss OP-TEE.

1.4.4 Vulnerability reporting

Please send an email to the address mentioned above (not to TEE-dev). Don’t include any details at this point, just
mention that you’d like to report a security issue. An engineer from the core OP-TEE team will get back to you for
further communication and discussions about your findings. Please also read the Disclosure policy page and especially
the Reporting issues section, so you are aware of the rules we are following.
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1.4.5 Core Team

The core team consists of engineers from Linaro and engineers from Linaro’s member companies. Related, see the
core team at GitHub.

1.5 Disclosure policy

When a vulnerability has been reported (see Vulnerability reporting) to the Core Team, it is up to them to implement
mitigations and fixes as well as report back to stakeholders in a responsible way. This page describes the responsible
disclosure policy that applies to the OP-TEE project.

Note: The “core team” in Linaro (who owns the OP-TEE project) consists of engineers directly employed by Linaro
as well as engineers employed by companies who are members of Linaro.

1.5.1 Rules

To have some kind of ground to stand on we have defined a set of rules and conditions that applies both when it comes
to being a taker of information as well as being reporter of security issues. It should be noted that it is hard to write
rules that you can follow to 100%, since depending on the type of security issues being dealt with it might or might
not be possible for the core team and Linaro to re-distribute the information right away.

As an example of when we couldn’t follow our rules and disclosure policy was when we got informed (under NDA)
about the Spectre and Meltdown issues (this was before it was public knowledge). That was considered so sensitive
that we weren’t even allowed to share or discuss this outside Linaro (employees). But in general, we strive and try to
do our best to follow the rules etc that have been defined on this particular page.

Receiving information

The one receiving information about and fixes related to OP-TEE security vulnerabilities must follow these rules:

1. The receiver of vulnerability information and/or security fixes shared by the core team and Linaro are not
allowed to share, re-distribute or otherwise spread knowledge about the issues and security fixes outside their
own company until the disclosure deadline has passed and the information is publicly available.

Note: If the receiver still insists to share it with other people/companies he must first get approval from the
core team and Linaro to do so.

Reporting issues

The one reporting security vulnerabilities to the core team and Linaro are asked to do it under the conditions mentioned
below. It might seem like a long list, but we hope that it won’t scare people away from reporting issues. It’s mostly
common sense and also aims to rule out questions that otherwise might come to mind. In short, the rules by default
gives the core team and Linaro the power to decide what to do with the reported issue if nothing else has been agreed
between them and the reporter.

1. If nothing else has been agreed between the reporter and the core team and Linaro, then the rules and information
as stated on this page applies.

1.5. Disclosure policy 9
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1.1. This means that the core team and Linaro will re-distribute the information to the stakeholders
according to the plan described further down here.

1.2. This also means that patches etc will be submitted to the upstream project based on the proposed
disclosure day that will be given to the reporter after initial investigation.

2. By default, the information about the reported issue(s) will be shared within the core team (see the note about
the core team at the beginning of the page). If you as a reporter aren’t OK with that, then you must inform us
about that when reporting the issue.

3. By default, the core team and Linaro decides whether there should be a CVE created or not. If the reporter insist
on having a CVE created, then this should be expressed when doing the reporting.

4. The core team and Linaro have the rights to involve other experts to help us with mitigations and patches. If you
as a reporter aren’t OK with that, then you must inform us about that when reporting the issue.

5. Reporting security issues under NDA should be seen as a last resort thing. If/when that happens, then we will
come up with a mutual agreement on a disclosure plan.

6. It is appreciated if the reporter have estimated some initial severity scoring as described further down on this
page. This is mainly to get an indication whether we share the same view about the severity or not.

1.5.2 Trusted Stakeholders

The core team keeps track of companies and maintainers who are considered as trustworthy OP-TEE users. This is a
vetted list and people from companies can only be added to that list after first talking to the core team. In short what
is required to be added to that list is:

• A justification of why you need to know about security issues and should have access to security fixes before
they are going public.

• A company email address (we do not accept gmail, yahoo and similar addresses).

• You accept our disclosure policy rules (as described at here).

Note: The core team and Linaro have the rights to deny anyone to be on this list. We also have the rights to remove
people on the list if there should be a reason to do so.

1.5.3 Disclosure deadline

By default we are following the industry standard with 90-days disclosure deadline. This applies both when we find
security issues that needs to be fixed in the upstream project, as well as when we are the ones reporting issues found in
vendor trees (forks of OP-TEE). The reason for 90-days is to give companies enough time to patch and deploy updated
software to their devices.

Likewise we are going to propose a 90-days disclosure deadline for issues that are being reported to us, that we are
supposed to fix.

However, for issues that falls in the severity category ‘low’ and in some cases ‘medium’ (see Severity table below),
we have the rights to decide whether to upstream patches as soon as they are ready. If the reporter or the some of the
trustworthy stakeholders knowing about the security issue disagrees, then they must inform the core team and Linaro
about it as soon as possible and then we will come up with an alternate plan.
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0day exploits

This is a previously unknown and unpatched vulnerability which is been used actively in the wild. As a consequence
of that we believe that 0day exploits require a much more urgent action. I.e., a fix or some kind of mitigation that
limits the damage needs to be created as soon as possible. Our target for such fixes and mitigations are within 14 days
from the day when we learned about the 0day exploit (full weeks, including weekends).

1.5.4 Issue process

For regular security issues (non 0day) we follow the flow chart below. Note that the orange path is when it is a low
(and maybe medium) severity issue we are dealing with, so that is a special case with an alternate path.

Issue reported
Day 1

90 day counter starts

Create mitigations

Inform stakeholders

Day 90

Update security advisoriesUpstream Fixes Update CVE
(if created)

Patch ready

Severity >= Low/Medium? Share fixes

Check if patch should go upstream directly

No

Create CVE

Yes

For 0day exploits we follow this flow chart:
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0day issue reported
Day 1

14 day counter starts

Create mitigations

Inform stakeholders

Day 14

Update security advisories Upstream Fixes Update CVE

Patch ready Severity >= Medium?

Share fixes Create CVE

Yes

1.5.5 Recognition

Once the disclosure deadline has passed and information and mitigations will go public we want to give credits to the
ones finding, reporting and fixing the issues. Typically that is given in two ways. One is in textual form at our security
advisories page and the other way is directly in patches applied on the upstream project in questions.

For patches we prefer having a real physical person being mentioned (see Reported-by and Suggested-by in the example
below), but also a company name or group could be used if it was a joint effort finding the security issue or if the person
finding the issue prefer not being mentioned directly for some reason. A patch would typically look like this:

core: fixes privilege escalation

By doing X, one was able to exploit a privilege escalation
vulnerability. By changing Y this is no longer a security
issue.

Fixes CVE-20xx-YYYY

Signed-off-by: John Doe <john.doe@foobar.org>
Reviewed-by: Richard Roe <richard.roe@foobar.org>
Reported-by: Jane Doe <jane.doe@notable-hackers.com>
Suggested-by: Jane Doe <jane.doe@notable-hackers.com>

1.5.6 CVE

If there is a need to request a CVE identifier, then the Distributed Weakness Filing Project should be used. At that
page you will find the current link to the DWF project.

1.5.7 Severity scoring

When deciding the severity for a vulnerability we start out by doing a scoring similar to the DREAD scoring system,
but tweaked for OP-TEE purposes. This mainly serves as a guide to get some kind of indication of the severity. The
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final severity is decided on case by case basis.

Note: A DREAD score can change over time. The initial analysis could give a certain score, but later on when a
vulnerability is well known and exploits are readily available the score will be different (ususally more severe).

Damage Potential

This should give an answer to much damage is caused if the vulnerability is exploited.

ScoreDamange potential
0 No damage.
1 Normal World User space is compromised and could leak sensitive data.
1 Denial of service from Normal World.
2 Normal World Linux kernel space is compromised and could leak sensitive data.
5 TEE Trusted Application compromised and could leak data only accessible by the Trusted Application.
7 TEE core (kernel space) compromised and leaking trivial information.
9 TEE core (kernel space) compromised and leaking sensitive information.
10 TEE fully compromised and the attacker in full control.

Reproducibility

This describes how easy (or hard) it is to reproduce the attack.

ScoreReproducibility
0 Not reproducible.
1 No proven attack exists.
1 The attack is very difficult to reproduce, even with knowledge of the security hole (requires special lab

equipment for example)
2 Proof of concept attack exists, but only works in a specially crafted, non-standard configuration.
4 The attack can be reproduced, but only with tooling / software / knowledge that has not been made public

(typically the one finding the security issue have created a tool, which hasn’t been released yet).
9 The attack can be reproduced, but only with tooling (JTAG, ChipWhisperer etc) / software / knowledge that

is readily available to anyone.
10 The attack can be reproduced every time by a novice user without any need for extra tools.

Exploitability

This should answer how easy it is to launch an attack.

ScoreExploitability
0 Not exploitable.
1 Theoretically exploitable (even with knowledge, there seems to be no viable path for a real exploit).
7 Only authenticated user(s) can make the attack.
8 A skilled programmer with in-depth knowledge could make the attack.
9 A novice programmer could make the attack in a short time.
10 A novice user could make the attack in a short time (exploits readily available on internet and/or integrated in

known hacker/pen-testing tools).

Affected Users

This should give a rough answer to how many people are affected by a successful attack.

1.5. Disclosure policy 13
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ScoreAffected Users
0 No users affected.
1 All users, running a debug/developer configuration.
1 A single user.
10 All users, running a release configuration (key customers).

Discoverability

This should answer how easy it is to discover the threat.

ScoreDiscoverability
0 Not discoverable.
1 The vulnerability would require other successful exploits in order to be able to discover this bug.
2 The bug is obscure, and it is unlikely that users will work out damage potential.
5 Information explaining the attack exists, but is only shared with a small group of people (and it is not intended

to be shared publicly in a foreseeable time or until mitigations has been merged).
10 Published information explains the attack.

Severity table

Based on the DREAD score, we get some kind of indication of the severity. In the table below you can see how we
are mapping things between a DREAD score and severity.

SeverityScore CVE?Comment
No
risk

[0, 1) No
CVE
cre-
ated.

This is not considered as a security issue, it’s a regular bug.

Low[1, 4) No
CVE
cre-
ated.

This could be seen as a security issue, but could probably be treated as general bug.

Medium[4, 7) Depends.This is a security issue, but on the lower side of the score it might be treated as a bug.
For the higher end it is likely that a CVE will be created.

High[7, 9) CVE
cre-
ated.

It is definitely a security issue.

Critical[9, 10] CVE
cre-
ated.

It is definitely a security issue, very urgent to start working with mitigations etc.

Example

To have a better understanding how this would look like in practice, let’s show a couple of examples.

Example 1 - Spectre v2 - Branch Target Injection (CVE-2017-5715)

Note that this example should be seed from a TrustZone / TEE point of view.

• D: What damage could it cause?

– TEE leaking sensitive data, i.e., 9.
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• R: Easy to reproduce?

– No proven attack exists on TrustZone/TEE software, i.e, 1.

• E: Easy to launch the attack?

– Theoretically exploitable, i.e., 1

• A: How many users would be affected by a successful attack?

– All users, i.e., 10.

• D: How easy is it to discover this issue?

– It’s public information, i.e., 10.

This gives the score: (9 + 1 + 1 + 10 + 10) / 5 = 6.2 which indicates that this would a bit on the higher end of medium
severity.

Example 2 - Bellcore attack on OP-TEE (CVE-2017-1000412)

• D: What damage could it cause?

– TEE leaking sensitive data (private key used to sign and verify Trusted Applications), i.e., 9.

• R: Easy to reproduce?

– With a ChipWhisperer (readily available) it would be possible for a somewhat skilled engineer to do
this on their own on a device running OP-TEE, i.e., 9.

• E: Easy to launch the attack?

– A skilled engineer with in-depth knowledge could make the attack, i.e., 8.

• A: How many users would be affected by a successful attack?

– All users, i.e., 10.

• D: How easy is it to discover this issue?

– It’s public information, i.e., 10.

This gives the score: (9 + 9 + 8 + 10 + 10) / 5 = 9.2 which indicates that this would be a critical issue.

1.6 License headers

This document defines the format of the copyright and license headers in OP-TEE source files. Such headers shall
comply with the rules described here, which are compatible with the rules adopted by the Linux kernel community.

1.6.1 New source files

• Rule 1.1 Shall contain exactly one SPDX license identifier, which can express a single or multiple licenses (refer
to SPDX for syntax details).

• Rule 1.2 The SPDX license identifier shall be added as a comment line. It shall be the first possible line in the
file which can contain a comment. The comment style shall depend on the file type:

– Rule 1.2.1 C source: // SPDX-License-Identifier: <expression>

– Rule 1.2.2 C header: /* SPDX-License-Identifier: <expression> */

– Rule 1.2.3 Assembly: /* SPDX-License-Identifier: <expression> */

– Rule 1.2.4 Python, shell: # SPDX-License-Identifier: <expression>
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• Rule 1.3 Shall contain at least one copyright line

• Rule 1.4 Shall not contain the mention ‘All rights reserved’

• Rule 1.5 Shall not contain any license notice other than the SPDX license identifier

Note that files imported from external projects are not new files. The rules for pre-existing files (below) apply.

1.6.2 Pre-existing or imported files

• Rule 2.1 SPDX license identifiers shall be added according to the license notice(s) in the file and the rules above
(1.1 and 1.2*)

• Rule 2.2 It is recommended that license notices be removed once the corresponding identifier has been added.
Note however that this may only be done by the copyright holder(s) of the file.

• Rule 2.3 Similar to 2.2, and subject to the same conditions, the text: “All rights reserved” shall be removed also.

1.7 Platforms supported

Several platforms are supported. In order to manage slight differences between platforms, a PLATFORM_FLAVOR
flag has been introduced. The PLATFORM and PLATFORM_FLAVOR flags define the whole configuration for a
chip the where the Trusted OS runs. Note that there is also a composite form which makes it possible to append
PLATFORM_FLAVOR directly, by adding a dash in-between the names. The composite form is shown below for the
different boards. For more specific details about build flags etc, please read Configuration and flags. Some platforms
have different sub-maintainers, please refer to the file MAINTAINERS for contact details for various platforms.

Table 1: Platforms officially supported in OP-TEE
Platform Composite PLATFORM flag Publicly available? Maintained?
ARM Juno Board PLATFORM=vexpress-juno Yes Yes
Atmel ATSAMA5D2-XULT Board PLATFORM=sam Yes Yes
Broadcom ns3 PLATFORM=bcm-ns3 No Yes
DeveloperBox (Socionext Synquacer SC2A11) PLATFORM=synquacer Yes Yes
FSL ls1021a PLATFORM=ls-ls1021atwr Yes Yes
NXP ls1043ardb PLATFORM=ls-ls1043ardb Yes Yes
NXP ls1046ardb PLATFORM=ls-ls1046ardb Yes Yes
NXP ls1012ardb PLATFORM=ls-ls1012ardb Yes Yes
NXP ls1028ardb PLATFORM=ls-ls1028ardb Yes Yes
NXP ls1088ardb PLATFORM=ls-ls1088ardb Yes Yes
NXP ls2088ardb PLATFORM=ls-ls2088ardb Yes Yes
NXP ls1012afrwy PLATFORM=ls-ls1012afrwy Yes Yes
FSL i.MX6 Quad SABRE Lite Board PLATFORM=imx-mx6qsabrelite Yes Yes
FSL i.MX6 Quad SABRE SD Board PLATFORM=imx-mx6qsabresd Yes Yes
SolidRun i.MX6 Quad Hummingboard Edge PLATFORM=imx-mx6qhmbedge Yes Yes
SolidRun i.MX6 Dual Hummingboard Edge PLATFORM=imx-mx6dhmbedge Yes Yes
SolidRun i.MX6 Dual Lite Hummingboard Edge PLATFORM=imx-mx6dlhmbedge Yes Yes
SolidRun i.MX6 Solo Hummingboard Edge PLATFORM=imx-mx6shmbedge Yes Yes
FSL i.MX6 UltraLite EVK Board PLATFORM=imx-mx6ulevk Yes Yes
NXP i.MX7Dual SabreSD Board PLATFORM=imx-mx7dsabresd Yes Yes
NXP i.MX7Solo WaRP7 Board PLATFORM=imx-mx7swarp7 Yes Yes
NXP i.MX8MQEVK Board PLATFORM=imx-imx8mqevk Yes Yes
NXP i.MX8MMEVK Board PLATFORM=imx-imx8mmevk Yes Yes

Continued on next page
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http://www.nxp.com/products/microcontrollers-and-processors/power-architecture-processors/qoriq-platforms/developer-resources/qoriq-ls2088a-reference-design-board:LS2088A-RDB
https://www.nxp.com/support/developer-resources/software-development-tools/qoriq-developer-resources/layerscape-frwy-ls1012a-board:FRWY-LS1012A
https://boundarydevices.com/product/sabre-lite-imx6-sbc/
http://www.nxp.com/products/software-and-tools/hardware-development-tools/sabre-development-system/sabre-board-for-smart-devices-based-on-the-i.mx-6quad-applications-processors:RD-IMX6Q-SABRE
https://www.solid-run.com/product/hummingboard-edge-imx6q-wa-h/
https://www.solid-run.com/product/hummingboard-edge-imx6d-wa-h/
https://www.solid-run.com/product/hummingboard-edge-imx6dl-0c-h/
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https://www.nxp.com/support/developer-resources/run-time-software/i.mx-developer-resources/evaluation-kit-for-the-i.mx-8m-applications-processor:MCIMX8M-EVK
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/i.mx-applications-processors/i.mx-8-processors/i.mx-8m-mini-family-arm-cortex-a53-cortex-m4-audio-voice-video:i.MX8MMINI?lang=en&lang_cd=en&
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Table 1 – continued from previous page
Platform Composite PLATFORM flag Publicly available? Maintained?
ARM Foundation FVP PLATFORM=vexpress-fvp Yes Yes
HiSilicon D02 PLATFORM=d02 No Yes
HiSilicon Hi3519AV100 Demo Board PLATFORM=hisilicon-hi3519av100_demo No Yes
HiKey Board (HiSilicon Kirin 620) PLATFORM=hikey` or `PLATFORM=hikey-hikey Yes Yes
HiKey960 Board (HiSilicon Kirin 960) PLATFORM=hikey-hikey960 Yes Yes
Marvell ARMADA 7K Family PLATFORM=marvell-armada7k8k Yes Yes
Marvell ARMADA 8K Family PLATFORM=marvell-armada7k8k Yes Yes
Marvell ARMADA 3700 Family PLATFORM=marvell-armada3700 Yes Yes
MediaTek MT8173 EVB Board PLATFORM=mediatek-mt8173 No Yes
Poplar Board (HiSilicon Hi3798C V200) PLATFORM=poplar Yes Yes
QEMU PLATFORM=vexpress-qemu_virt Yes Yes
QEMUv8 PLATFORM=vexpress-qemu_armv8a Yes Yes
Raspberry Pi 3 PLATFORM=rpi3 Yes Yes
Renesas RCAR PLATFORM=rcar No Yes
Rockchip RK322X PLATFORM=rockchip-rk322x No Yes
STMicroelectronics b2260 - h410 (96boards fmt) PLATFORM=stm-b2260 No Yes
STMicroelectronics b2120 - h310 / h410 PLATFORM=stm-cannes No Yes
STMicroelectronics STM32MP1 series PLATFORM=stm32mp1 Yes Yes
Allwinner A64 Pine64 Board PLATFORM=sunxi-sun50i_a64 Yes Yes
Texas Instruments AM65x PLATFORM=k3-am65x Yes Yes
Texas Instruments DRA7xx PLATFORM=ti-dra7xx Yes Yes
Texas Instruments AM57xx PLATFORM=ti-am57xx Yes Yes
Texas Instruments AM43xx PLATFORM=ti-am43xx Yes Yes
Xilinx Zynq 7000 ZC702 PLATFORM=zynq7k-zc702 Yes No (v2.3.0)
Xilinx Zynq UltraScale+ MPSOC PLATFORM=zynqmp-zcu102 Yes No (v2.4.0)
Spreadtrum SC9860 PLATFORM=sprd-sc9860 No No (v2.1.0)

1.8 Presentations

Below are presentations coming from engineers working with OP-TEE in one or another way. Note that the older they
are, the less relevant is the information in them. So do not trust blindly what was said back in the days, cross check
with latest version to understand whether things have changed or not.

The links are sorted in chronological order, newest first and oldest at the end.

• BKK19

– BKK19-419 - Debugging with OP-TEE (slides, video)

– BKK19-415 - OP-TEE: Shared memory between TAs (slides, video)

– BKK19-403 - Using DTB overlays in OP-TEE (slides, video)

– BKK19-215 - TPM in TEE (slides, video)

– BKK19-117 - Security WG Lightning talks (slides, video)

• YVR18

– YVR18-414 - Keymaster and Gatekeeper (slides, video)

– YVR18-117 - SWG updates since HKG18 (slides, video)

• HKG18
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https://youtu.be/L-AfhBzxWTU
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https://youtu.be/WFH4KGoToHI
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https://youtu.be/-uR_oUp0wPE
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https://s3.amazonaws.com/connect.linaro.org/yvr18/presentations/yvr18-414.pdf
https://youtu.be/UR3io1uCkdo
https://s3.amazonaws.com/connect.linaro.org/yvr18/presentations/yvr18-117.pdf
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– HKG18-402 - Build secure key management services in OP-TEE (slides, video)

• SFO17

– SFO17-309 - Secure storage updates (slides, video)

• Webinar

– TEE Linux kernel support and open source security (slides, video)

• BUD17

– BUD17-416 - Benchmark and profiling in OP TEE (slides, video)

– BUD17-400 - Secure Data Path with OPTEE (slides, video)

• LAS16

– LAS16-504 - Secure Storage updates in OP-TEE (slides, video)

– LAS16-406 - Android Widevine on OP-TEE (slides, video)

– LAS16-111 - Easing Access to ARM TrustZone OP TEE and Raspberry Pi 3 (slides, video)

• BKK16

– BKK16-201 - PlayReady OP-TEE Integration with Secure Video Path (slides, video)

– BKK16-110 - A Gentle Introduction to Trusted Execution and OP-TEE (slides)

• SFO15

– SFO15-503 - Secure storage in OP-TEE (slides, video)

– SFO15-205 - OP-TEE Content Decryption with Microsoft PlayReady on ARM TrustZone (slides,
video)

– SFO15-200 - TEE kernel driver (slides, video)

• HKG15

– HKG15-311 - OP-TEE for Beginners and Porting Review (slides, video)

– HKG15-307 - OP-TEE pager (slides, video)

• LCU14

– LCU14-306 - OP-TEE Future Enhancements (slides)

– LCU14-302 - How to port OP-TEE to another platform (slides, video)

– LCU14-107 - OP-TEE on ARMv8-A (slides, video)

– LCU14-103 - How to create and run Trusted Applications on OP-TEE (slides, video)

• LCA14

– LCA14-502 - The way to a generic TrustZone solution (slides)

– LCA14-418 - Testing a secure framework (slides)
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https://www.slideshare.net/linaroorg/hkg18402-build-secure-key-management-services-in-optee
http://connect.linaro.org.s3.amazonaws.com/hkg18/videos/hkg18-402.mp4
https://www.slideshare.net/linaroorg/secure-storage-updates-sfo17309
https://youtu.be/k61PiuFrc_U
https://www.slideshare.net/linaroorg/tee-kernel-support-is-now-upstream-what-this-means-for-open-source-security-76943254
https://youtu.be/kk3_DUMJrTI
http://s3.amazonaws.com/connect.linaro.org/bud17/Presentations/BUD17-416%20-%20Benchmark%20and%20Profiling%20in%20OP-TEE.pdf
https://youtu.be/gr6AxvqfDds
https://www.slideshare.net/linaroorg/bud17400-secure-data-path-with-optee
https://youtu.be/6JdzsWZq4Ls
http://s3.amazonaws.com/connect.linaro.org/las16/Presentations/Friday/LAS16-504%20-%20Secure%20Storage%20updates%20in%20OP-TEE.pdf
https://youtu.be/9OEt4aG6V5w
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https://youtu.be/LEJqTXVs9N8
https://www.slideshare.net/96Boards/las16-111-raspberry-pi3-optee-and-jtag-debugging
https://youtu.be/3MnLrHoQcyI
https://www.slideshare.net/linaroorg/bkk16201-play-ready-optee-integration-with-secure-video-path-lhg1
https://youtu.be/04iRIWvxCiw
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1.9 Releases

1.9.1 Cadence

New versions of OP-TEE are released four times a year, i.e., quarterly releases. The releases have historically lined
up with Linaro Connect events. I.e., a release has been made right after Linaro Connect and one release somewhere
between two Linaro Connects. I.e., typically there has been releases in January, April, July and October.

1.9.2 Changelog

The changelog is stored in the optee_os git (CHANGELOG.md). There you can see what has been done between the
different releases in terms of commits as well as pull requests.

1.9.3 Versioning schema

OP-TEE follows Semantic Versioning 2.0.0. What that means in practice is well described at the link just shown.

1.9.4 Release procedure

There are certain steps that needs to be done when making a release. This checklist here serves as guidance to the one
in charge of making a new release. Roughly start with this 2-3 weeks before the targeted release date.
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tl;dr

Table 2: Short version of the OP-TEE release procedure
When (Tmi-
nus)

Action Example

3w Create release pull request PR#3099
3w Inform maintainers about upcoming release
1w Increment the revision number in mk/config.mk CFG_OPTEE_REVISION_MAJOR

?
=
3
CFG_OPTEE_REVISION_MINOR
?
=
x

1w Create release candidate tag in optee_* + build.git git
tag
-
a
3.x.y-
rc1
-
m
“3.x.y-
rc1”

1w Let maintainers know about the release candidate tag
1w Test platform builds / devices
Release day Update CHANGELOG.md changelog

ex-
am-
ple

Release day Collect/merge Tested-By tags commit
ex-
am-
ple

Release day Create release tag in optee_* + build.git git
tag
-
a
3.x.y
-
m
“3.x.y”

Release day Create release branch in manifest git
check-
out
-
b
3.x.y
ori-
gin/master

Release day Update manifest XML-files 3.6.0
sta-
ble

Release day Inform maintainers and stakeholder that release has been completed.
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Long version

1. Create a “release pull request” at GitHub ought to collect Tested-By tags from various maintain-
ers. As an example, see PR#3099.

2. Send email to all maintainers to let them know about the upcoming release. The addresses to the
maintainers can be found in the MAINTAINERS file.

Hint: With this command in bash you will get all email addresses

$ cat MAINTAINERS | grep '[RM]:.*<.*@.*>' | \
sed 's/>.*/>/' | sed 's/.:\t//' | sort | uniq

3. Increment the revision number in mk/config.mk: CFG_OPTEE_REVISION_MAJOR and
CFG_OPTEE_REVISION_MINOR. These values are made available to TAs and to the Normal
World driver at boot time.

4. Create a release candidate (RC) tag (annotated tag, i.e., git tag -a 3.x.y-rc1 -m "3.x.
y-rc1") in the following gits optee_* and build.git. One way to do it is like this

$ export VER=3.x.y-rc1
$ for d in optee* build; do ( cd $d; git tag -a $VER -m $VER ); done
$ for d in optee* build; do ( cd $d; git push origin $VER ); done

5. Send a follow up email to all maintainers to let them know that there is a release tag ready to be
tested on their devices for the platforms that they are maintaining.

6. In case major regressions are found, then fix those and create a another release candidate tag (i.e.,
repeat step 3 and 4 until there are no remaining issues left).

7. On release day: Update CHANGELOG.md see this changelog example to see how that should look
like.

8. Collect all tags (Tested-By etc) from maintainers and use those in the commit message, for an
example see this commit example.

9. Create a release tag (annotated tag, i.e., git tag -a 3.x.y -m "3.x.y") in the following
gits optee_* and build.git.

Hint: You can use the same steps as in step 3, when creating the tags.

10. Create a new branch in manifest from master where the name corresponds to the release you are
preparing. I.e., git checkout -b 3.x.y origin/master.

11. Update all manifest XML-files in the manifest git, so they refer to the tag in the release we are
working with (see 3.6.0 stable commit as an example). This can be done with the make_stable.sh
script. Now it is also time to push the new branch and tag it. Example:

$ export VER=3.x.y
$ cd manifest
$ ./make_stable.sh -o -r $VER
$ git diff # make sure everything looks good
$ git commit -a -m "OP-TEE $VER stable"
$ git remote add upstream git@github.com:OP-TEE/manifest
$ git push upstream

(continues on next page)
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(continued from previous page)

$ git tag -s -a $VER -m $VER
$ git push upstream tag $VER

12. Send a last email to maintainers and other stakeholders telling that the release has been completed.
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CHAPTER 2

Architecture

2.1 Core

2.1.1 Interrupt handling

This section describes how optee_os handles switches of world execution context based on SMC exceptions and inter-
rupt notifications. Interrupt notifications are IRQ/FIQ exceptions which may also imply switching of world execution
context: normal world to secure world, or secure world to normal world.

Use cases of world context switch

This section lists all the cases where optee_os is involved in world context switches. Optee_os executes in the secure
world. World switch is done by the core’s secure monitor level/mode, referred below as the Monitor.

When the normal world invokes the secure world, the normal world executes a SMC instruction. The SMC exception
is always trapped by the Monitor. If the related service targets the trusted OS, the Monitor will switch to optee_os
world execution. When the secure world returns to the normal world, optee_os executes a SMC that is caught by the
Monitor which switches back to the normal world.

When a secure interrupt is signaled by the Arm GIC, it shall reach the optee_os interrupt exception vector. If the
secure world is executing, optee_os will handle straight the interrupt from its exception vector. If the normal world is
executing when the secure interrupt raises, the Monitor vector must handle the exception and invoke the optee_os to
serve the interrupt.

When a non-secure interrupt is signaled by the Arm GIC, it shall reach the normal world interrupt exception vector.
If the normal world is executing, it will handle straight the exception from its exception vector. If the secure world is
executing when the non-secure interrupt raises, optee_os will temporarily return back to normal world via the Monitor
to let normal world serve the interrupt.
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Core exception vectors

Monitor vector is VBAR_EL3 in AArch64 and MVBAR in Armv7-A/AArch32. Monitor can be reached while normal
world or secure world is executing. The executing secure state is known to the Monitor through the SCR_NS.

Monitor can be reached from a SMC exception, an IRQ or FIQ exception (so-called interrupts) and from asynchronous
aborts. Obviously monitor aborts (data, prefetch, undef) are local to the Monitor execution.

The Monitor can be external to optee_os (case CFG_WITH_ARM_TRUSTED_FW=y). If not, provides a local secure
monitor core/arch/arm/sm. Armv7-A platforms should use the optee_os secure monitor. Armv8-A platforms
are likely to rely on an Trusted Firmware A.

When executing outside the Monitor, the system is executing either in the normal world (SCR_NS=1) or in the secure
world (SCR_NS=0). Each world owns its own exception vector table (state vector):

• VBAR_EL2 or VBAR_EL1 non-secure or VBAR_EL1 secure for AArch64.

• HVBAR or VBAR non-secure or VBAR secure for Armv7-A and AArch32.

All SMC exceptions are trapped in the Monitor vector. IRQ/FIQ exceptions can be trapped either in the Monitor vector
or in the state vector of the executing world.

When the normal world is executing, the system is configured to route:

• secure interrupts to the Monitor that will forward to optee_os

• non-secure interrupts to the executing world exception vector.

When the secure world is executing, the system is configured to route:

• secure and non-secure interrupts to the executing optee_os exception vector. optee_os shall forward the non-
secure interrupts to the normal world.

Optee_os non-secure interrupts are always trapped in the state vector of the executing world. This is reflected by a
static value of SCR_(IRQ|FIQ).

Native and foreign interrupts

Two types of interrupt are defined in optee_os:

• Native interrupt - The interrupt handled by optee_os (for example: secure interrupt)

• Foreign interrupt - The interrupt not handled by optee_os (for example: non-secure interrupt which is handled
by normal world)

For Arm GICv2 mode, native interrupt is sent as FIQ and foreign interrupt is sent as IRQ. For Arm GICv3 mode,
foreign interrupt is sent as FIQ which could be handled by either secure world (aarch32 Monitor mode or aarch64
EL3) or normal world. Arm GICv3 mode can be enabled by setting CFG_ARM_GICV3=y. For clarity, this document
mainly chooses the GICv2 convention and refers the IRQ as optee_os foreign interrupts, and FIQ as optee_os native
interrupts. Native interrupts must be securely routed to optee_os. Foreign interrupts, when trapped during secure
world execution might need to be efficiently routed to the normal world.

Normal World invokes optee_os using SMC

Entering the Secure Monitor

The monitor manages all entries and exits of secure world. To enter secure world from normal world the monitor
saves the state of normal world (general purpose registers and system registers which are not banked) and restores the
previous state of secure world. Then a return from exception is performed and the restored secure state is resumed.
Exit from secure world to normal world is the reverse.
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Some general purpose registers are not saved and restored on entry and exit, those are used to pass parameters between
secure and normal world (see ARM_DEN0028A_SMC_Calling_Convention for details).

Entry and exit of Trusted OS

On entry and exit of Trusted OS each CPU is uses a separate entry stack and runs with IRQ and FIQ blocked. SMCs
are categorised in two flavors: fast and standard.

• For fast SMCs, optee_os will execute on the entry stack with IRQ/FIQ blocked until the execution returns to
normal world.

• For standard SMCs, optee_os will at some point execute the requested service with interrupts unblocked.
In order to handle interrupts, mainly forwarding of foreign interrupts, optee_os assigns a trusted thread
(core/arch/arm/kernel/thread.c) to the SMC request. The trusted thread stores the execution context of the re-
quested service. This context can be suspended and resumed as the requested service executes and is interrupted.
The trusted thread is released only once the service execution returns with a completion status.

For standard SMCs, optee_os allocates or resumes a trusted thread then unblock the IRQ/FIQ lines. When the
optee_os needs to invoke the normal world from a foreign interrupt or a remote service call, optee_os blocks
IRQ/FIQ and suspends the trusted thread. When suspending, optee_os gets back to the entry stack.

• Both fast and standard SMC end on the entry stack with IRQ/FIQ blocked and optee_os invokes the Monitor
through a SMC to return to the normal world.

Fig. 1: SMC entry to secure world

Deliver non-secure interrupts to Normal World

This section uses the Arm GICv1/v2 conventions: IRQ signals non-secure interrupts while FIQ signals secure inter-
rupts. On a GICv3 configuration, one should exchange IRQ and FIQ in this section.

Forward a Foreign Interrupt from Secure World to Normal World

When an IRQ is received in secure world as an IRQ exception then secure world:
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1. Saves trusted thread context (entire state of all processor modes for Armv7-A)

2. Blocks (masks) all interrupts (IRQ and FIQ)

3. Switches to entry stack

4. Issues an SMC with a value to indicates to normal world that an IRQ has been delivered and last SMC call
should be continued

The monitor restores normal world context with a return code indicating that an IRQ is about to be delivered. Normal
world issues a new SMC indicating that it should continue last SMC.

The monitor restores secure world context which locates the previously saved context and checks that it is a return
from IRQ that is requested before restoring the context and lets the secure world IRQ handler return from exception
where the execution would be resumed.

Note that the monitor itself does not know/care that it has just forwarded an IRQ to normal world. The bookkeeping is
done in the trusted thread handling in Trusted OS. Normal world is responsible to decide when the secure world thread
should resume execution (for details, see Thread handling).

Fig. 2: IRQ received in secure world and forwarded to normal world

Deliver a non-secure interrupt to normal world when ‘‘SCR_NS‘‘ is set

Since SCR_IRQ is cleared, an IRQ will be delivered using the state vector (VBAR) in the normal world. The IRQ is
received as any other exception by normal world, the monitor and the Trusted OS are not involved at all.
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Deliver secure interrupts to Secure World

This section uses the Arm GICv1/v2 conventions: FIQ signals secure interrupts while IRQ signals non-secure inter-
rupts. On a GICv3 configuration, one should exchange IRQ and FIQ in this section. A FIQ can be received during
two different states, either in normal world (SCR_NS is set) or in secure world (SCR_NS is cleared). When the secure
monitor is active (Armv8-A EL3 or Armv7-A Monitor mode) FIQ is masked. FIQ reception in the two different states
is described below.

Deliver FIQ to secure world when SCR_NS is set

When the monitor gets an FIQ exception it:

1. Saves normal world context and restores secure world context from last secure world exit (which will have IRQ
and FIQ blocked)

2. Clears SCR_FIQ when clearing SCR_NS

3. Sets “FIQ” as parameter to secure world entry

4. Does a return from exception into secure context

5. Secure world unmasks FIQs because of the “FIQ” parameter

6. FIQ is received as in exception using the state vector

7. The state vector handle returns from exception in secure world

8. Secure world issues an SMC to return to normal world

9. Monitor saves secure world context and restores normal world context

10. Does a return from exception into restored context

Fig. 3: FIQ received when SCR_NS is set

Deliver FIQ to secure world when SCR_NS is cleared

Since SCR_FIQ is cleared when SCR_NS is cleared a FIQ will be delivered using the state vector (VBAR) in secure
world. The FIQ is received as any other exception by Trusted OS, the monitor is not involved at all.
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Fig. 4: FIQ received while processing an IRQ forwarded from secure world
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Trusted thread scheduling

Trusted thread for standard services

OP-TEE standard services are carried through standard SMC. Execution of these services can be interrupted by foreign
interrupts. To suspend and restore the service execution, optee_os assigns a trusted thread at standard SMCs entry.

The trusted thread terminates when optee_os returns to the normal world with a service completion status.

A trusted thread execution can be interrupted by a native interrupt. In this case the native interrupt is handled by the
interrupt exception handlers and once served, optee_os returns to the execution trusted thread.

A trusted thread execution can be interrupted by a foreign interrupt. In this case, optee_os suspends the trusted thread
and invokes the normal world through the Monitor (optee_os so-called RPC services). The trusted threads will resume
only once normal world invokes the optee_os with the RPC service status.

A trusted thread execution can lead optee_os to invoke a service in normal world: access a file, get the REE current
time, etc. The trusted thread is suspended/resumed during remote service execution.

Scheduling considerations

When a trusted thread is interrupted by a foreign interrupt and when optee_os invokes a normal world service, the
normal world gets the opportunity to reschedule the running applications. The trusted thread will resume only once
the client application is scheduled back. Thus, a trusted thread execution follows the scheduling of the normal world
caller context.

Optee_os does not implement any thread scheduling. Each trusted thread is expected to track a service that is invoked
from the normal world and should return to it with an execution status.

The OP-TEE Linux driver (as implemented in drivers/tee/optee since Linux kernel 4.12) is designed so that the Linux
thread invoking OP-TEE gets assigned a trusted thread on TEE side. The execution of the trusted thread is tied to the
execution of the caller Linux thread which is under the Linux kernel scheduling decision. This means trusted threads
are scheduled by the Linux kernel.

Trusted thread constraints

TEE core handles a static number of trusted threads, see CFG_NUM_THREADS.

Trusted threads are only expensive on memory constrained system, mainly regarding the execution stack size.

On SMP systems, optee_os can execute several trusted threads in parallel if the normal world supports scheduling of
processes. Even on UP systems, supporting several trusted threads in optee_os helps normal world scheduler to be
efficient.

2.1.2 Memory objects

A memory object, MOBJ, describes a piece of memory. The interface provided is mostly abstract when it comes to
using the MOBJ to populate translation tables etc. There are different kinds of MOBJs describing:

• Physically contiguous memory

– created with mobj_phys_alloc(...).

• Virtual memory

– one instance with the name mobj_virt available.

– spans the entire virtual address space.

• Physically contiguous memory allocated from a tee_mm_pool_t *
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– created with mobj_mm_alloc(...).

• Paged memory

– created with mobj_paged_alloc(...).

– only contains the supplied size and makes mobj_is_paged(...) return true if supplied as argu-
ment.

• Secure copy paged shared memory

– created with mobj_seccpy_shm_alloc(...).

– makes mobj_is_paged(...) and mobj_is_secure(...) return true if supplied as argu-
ment.

2.1.3 MMU

Translation tables

OP-TEE uses several L1 translation tables, one large spanning 4 GiB and two or more small tables spanning 32 MiB.
The large translation table handles kernel mode mapping and matches all addresses not covered by the small translation
tables. The small translation tables are assigned per thread and covers the mapping of the virtual memory space for
one TA context.

Memory space between small and large translation table is configured by TTBRC. TTBR1 always points to the large
translation table. TTBR0 points to the a small translation table when user mapping is active and to the large translation
table when no user mapping is currently active. For details about registers etc, please refer to a Technical Reference
Manual for your architecture, for example Cortex-A53 TRM.

The translation tables has certain alignment constraints, the alignment (of the physical address) has to be the same as
the size of the translation table. The translation tables are statically allocated to avoid fragmentation of memory due
to the alignment constraints.

Each thread has one small L1 translation table of its own. Each TA context has a compact representation of its L1
translation table. The compact representation is used to initialize the thread specific L1 translation table when the TA
context is activated.
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TTBR0

TTBR1

Large L1
Spans 4 GiB

No active ctx

Small L1
Spans 32 MiB

per entry

0

1

...

n

Thread 0 ctx active

Thread 1 ctx active

Thread n ctx active

Page table cache

Page tables used to map TAs are managed with the page table cache. When the context of a TA is unmapped, all its
page tables are released with a call to pgt_free(). All page tables needed when mapping a TA are allocated using
pgt_alloc().

A fixed maximum number of translation tables are available in a pool. One thread may execute a TA which needs
all or almost all tables. This can block TAs from being executed by other threads. To ensure that all TAs eventually
will be permitted to execute pgt_alloc() temporarily frees eventual tables allocated before waiting for tables to
become available.

The page table cache behaves differently depending on configuration options.

Without paging (CFG_WITH_PAGER=n)

This is the easiest configuration. All page tables are statically allocated in the .nozi.pgt_cache section.
pgt_alloc() allocates tables from the free-list and pgt_free() returns the tables directly to the free-list.

With paging enabled (CFG_WITH_PAGER=y)

Page tables are allocated as zero initialized locked pages during boot using tee_pager_alloc(). Locked pages
are populated with physical pages on demand from the pager. The physical page can be released when not needed any
longer with tee_pager_release_phys().
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With CFG_WITH_LPAE=y each translation table has the same size as a physical page which makes it easy to re-
lease the physical page when the translation table isn’t needed any longer. With the short-descriptor table format
(CFG_WITH_LPAE=n) it becomes more complicated as four translation tables are stored in each page. Additional
bookkeeping is used to tell when the page for used by four separate translation tables can be released.

With paging of user TA enabled (CFG_PAGED_USER_TA=y)

With paging of user TAs enabled a cache of recently used translation tables is used. This can save us from a
storm of page faults when restoring the mappings of a recently unmapped TA. Which translation tables should be
cached is indicated with reference counting by the pager on used tables. When a table needs to be forcefully freed
tee_pager_pgt_save_and_release_entries() is called to let the pager know that the table can’t be used
any longer.

When a mapping in a TA is removed it also needs to be purged from cached tables with pgt_flush_ctx_range()
to prevent old mappings from being accidentally reused.

Switching to user mode

This section only applies with following configuration flags:

• CFG_WITH_LPAE=n

• CFG_CORE_UNMAP_CORE_AT_EL0=y

When switching to user mode only a minimal kernel mode mapping is kept. This is achieved by selecting a zeroed out
big L1 translation in TTBR1 when transitioning to user mode. When returning back to kernel mode the original L1
translation table is restored in TTBR1.

Switching to normal world

When switching to normal world either via a foreign interrupt (see Native and foreign interrupts or RPC there is a
chance that secure world will resume execution on a different CPU. This means that the new CPU need to be configured
with the context of the currently active TA. This is solved by always setting the TA context in the CPU when resuming
execution.

2.1.4 Pager

OP-TEE currently requires >256 KiB RAM for OP-TEE kernel memory. This is not a problem if OP-TEE uses
TrustZone protected DDR, but for security reasons OP-TEE may need to use TrustZone protected SRAM instead. The
amount of available SRAM varies between platforms, from just a few KiB up to over 512 KiB. Platforms with just a
few KiB of SRAM cannot be expected to be able to run a complete TEE solution in SRAM. But those with 128 to
256 KiB of SRAM can be expected to have a capable TEE solution in SRAM. The pager provides a solution to this by
demand paging parts of OP-TEE using virtual memory.

Secure memory

TrustZone protected SRAM is generally considered more secure than TrustZone protected DRAM as there is usually
more attack vectors on DRAM. The attack vectors are hardware dependent and can be different for different platforms.
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Backing store

TrustZone protected DRAM or in some cases non-secure DRAM is used as backing store. The data in the backing
store is integrity protected with one hash (SHA-256) per page (4KiB). Readonly pages are not encrypted since the
OP-TEE binary itself is not encrypted.

Partitioning of memory

The code that handles demand paging must always be available as it would otherwise lead to deadlock. The virtual
memory is partitioned as:

Type Sections
unpaged

text
rodata
data
bss
heap1
nozi
heap2

init / paged

text_init
rodata_init

paged

text_pageable
rodata_pageable

demand alloc

Where nozi stands for “not zero initialized”, this section contains entry stacks (thread stack when TEE pager is not
enabled) and translation tables (TEE pager cached translation table when the pager is enabled and LPAE MMU is
used).

The init area is available when OP-TEE is initializing and contains everything that is needed to initialize the pager.
After the pager has been initialized this area will be used for demand paged instead.

The demand alloc area is a special area where the pages are allocated and removed from the pager on demand.
Those pages are returned when OP-TEE does not need them any longer. The thread stacks currently belongs this area.
This means that when a stack is not used the physical pages can be used by the pager for better performance.

The technique to gather code in the different area is based on compiling all functions and data into separate sections.
The unpaged text and rodata is then gathered by linking all object files with --gc-sections to eliminate sections
that are outside the dependency graph of the entry functions for unpaged functions. A script analyzes this ELF file and
generates the bits of the final link script. The process is repeated for init text and rodata. What is not “unpaged” or
“init” becomes “paged”.

Partitioning of the binary
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Note: The struct definitions provided in this section are explicitly covered by the following dual license:

SPDX-License-Identifier: (BSD-2-Clause OR GPL-2.0)

The binary is partitioned into four parts as:

Binary
Header
Init
Hashes
Pageable

The header is defined as:

#define OPTEE_MAGIC 0x4554504f
#define OPTEE_VERSION 1
#define OPTEE_ARCH_ARM32 0
#define OPTEE_ARCH_ARM64 1

struct optee_header {
uint32_t magic;
uint8_t version;
uint8_t arch;
uint16_t flags;
uint32_t init_size;
uint32_t init_load_addr_hi;
uint32_t init_load_addr_lo;
uint32_t init_mem_usage;
uint32_t paged_size;

};

The header is only used by the loader of OP-TEE, not OP-TEE itself. To initialize OP-TEE the loader loads
the complete binary into memory and copies what follows the header and the following init_size bytes to
(init_load_addr_hi << 32 | init_load_addr_lo). init_mem_usage is used by the loader to be
able to check that there is enough physical memory available for OP-TEE to be able to initialize at all. The loader
supplies in r0/x0 the address of the first byte following what was not copied and jumps to the load address to start
OP-TEE.

In addition to overall binary with partitions inside described as above, three extra binaries are generated simultaneously
during build process for loaders who support loading separate binaries:

v2 binary
Header

v2 binary
Init
Hashes

v2 binary
Pageable
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In this case, loaders load header binary first to get image list and information of each image; and then load each of
them into specific load address assigned in structure. These binaries are named with v2 suffix to distinguish from the
existing binaries. Header format is updated to help loaders loading binaries efficiently:

#define OPTEE_IMAGE_ID_PAGER 0
#define OPTEE_IMAGE_ID_PAGED 1

struct optee_image {
uint32_t load_addr_hi;
uint32_t load_addr_lo;
uint32_t image_id;
uint32_t size;

};

struct optee_header_v2 {
uint32_t magic;
uint8_t version;
uint8_t arch;
uint16_t flags;
uint32_t nb_images;
struct optee_image optee_image[];

};

Magic number and architecture are identical as original. Version is increased to two. load_addr_hi and
load_addr_lo may be 0xFFFFFFFF for pageable binary since pageable part may get loaded by loader into
dynamic available position. image_id indicates how loader handles current binary. Loaders who don’t support
separate loading just ignore all v2 binaries.

Initializing the pager

The pager is initialized as early as possible during boot in order to minimize the “init” area. The global variable
tee_mm_vcore describes the virtual memory range that is covered by the level 2 translation table supplied to
tee_pager_init(...).

Assign pageable areas

A virtual memory range to be handled by the pager is registered with a call to tee_pager_add_core_area().

bool tee_pager_add_area(tee_mm_entry_t *mm,
uint32_t flags,
const void *store,
const void *hashes);

which takes a pointer to tee_mm_entry_t to tell the range, flags to tell how memory should be mapped (readonly,
execute etc), and pointers to backing store and hashes of the pages.

Assign physical pages

Physical SRAM pages are supplied by calling tee_pager_add_pages(...)

void tee_pager_add_pages(tee_vaddr_t vaddr,
size_t npages,
bool unmap);
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tee_pager_add_pages(...) takes the physical address stored in the entry mapping the virtual address vaddr
and npages entries after that and uses it to map new pages when needed. The unmap parameter tells whether the
pages should be unmapped immediately since they does not contain initialized data or be kept mapped until they need
to be recycled. The pages in the “init” area are supplied with unmap == false since those page have valid content
and are in use.

Invocation

The pager is invoked as part of the abort handler. A pool of physical pages are used to map different virtual addresses.
When a new virtual address needs to be mapped a free physical page is mapped at the new address, if a free physical
page cannot be found the oldest physical page is selected instead. When the page is mapped new data is copied from
backing store and the hash of the page is verified. If it is OK the pager returns from the exception to resume the
execution.

Data structures

Fig. 5: How the main pager data structures relates to each other

struct tee_pager_area

This is a central data structure when handling paged memory ranges. It’s defined as:

struct tee_pager_area {
struct fobj *fobj;
size_t fobj_pgoffs;
enum tee_pager_area_type type;
uint32_t flags;
vaddr_t base;
size_t size;
struct pgt *pgt;
TAILQ_ENTRY(tee_pager_area) link;
TAILQ_ENTRY(tee_pager_area) fobj_link;

};

Where base and size tells the memory range and fobj and fobj_pgoffs holds the content. A struct
tee_pager_area can only use struct fobj and one struct pgt (translation table) so memory ranges span-
ning multiple fobjs or pgts are split into multiple areas.
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struct fobj

This is a polymorph object, using different implmentations depending on how it’s initialized. It’s defines as:

struct fobj_ops {
void (*free)(struct fobj *fobj);
TEE_Result (*load_page)(struct fobj *fobj, unsigned int page_idx,

void *va);
TEE_Result (*save_page)(struct fobj *fobj, unsigned int page_idx,

const void *va);
};

struct fobj {
const struct fobj_ops *ops;
unsigned int num_pages;
struct refcount refc;
struct tee_pager_area_head areas;

};

num_pages Tells how many pages this fobj covers.

refc A reference counter, everyone referring to a fobj need to increase and decrease this as needed.

areas A list of areas using this fobj, traversed when making a virtual page unavailable.

struct tee_pager_pmem

This structure represents a physical page. It’s defined as:

struct tee_pager_pmem {
unsigned int flags;
unsigned int fobj_pgidx;
struct fobj *fobj;
void *va_alias;
TAILQ_ENTRY(tee_pager_pmem) link;

};

PMEM_FLAG_DIRTY Bit is set in flags when the page is mapped read/write at at least one location.

PMEM_FLAG_HIDDEN Bit is set in flags when the page is hidden, that is, not accessible anywhere.

fobj_pgidx The page at this index in the fobj is used in this physical page.

fobj The fobj backing this page.

va_alias Virtual address where this physical page is updated when loading it from backing store or
when writing it back.

All struct tee_pager_pmem are stored either in the global list tee_pager_pmem_head or in
tee_pager_lock_pmem_head. The latter is used by pages which are mapped and then locked in memory on
demand. The pages are returned back to tee_pager_pmem_head when the pages are exlicitly released with a call
to tee_pager_release_phys().

A physical page can be used by more than one tee_pager_area simultaneously. This is also know as shared
secure memory and will appear as such for both read-only and read-write mappings.

When a page is hidden it’s unmapped from all translation tables and the PMEM_FLAG_HIDDEN bit is set, but kept
in memory. When a physical page is released it’s also unmapped from all translation tables and it’s content is written
back to storage, then the fobj field is set to NULL to note the physical page as unused.
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Note that when struct tee_pager_pmem references a fobj it doesn’t update the reference counter since it’s
already guaranteed to be available due the struct tee_pager_area which must reference the fobj too.

Paging of user TA

Paging of user TAs can optionally be enabled with CFG_PAGED_USER_TA=y. Paging of user TAs is analogous to
paging of OP-TEE kernel parts but with a few differences:

• Read/write pages are paged in addition to read-only pages

• Page tables are managed dynamically

tee_pager_add_uta_area(...) is used to setup initial read/write mapping needed when populating the TA.
When the TA is fully populated and relocated tee_pager_set_uta_area_attr(...) changes the mapping
of the area to strict permissions used when the TA is running.

Paging shared secure memory

Shared secure memory is achieved by letting several tee_pager_area using the same backing fobj. When a
tee_pager_area is allocated and assigned a fobj it’s also added to a list for tee_pager_areas using this
fobj. This helps when a physical page is released.

When a fault occurs first a matching tee_pager_area is located. Then tee_pager_pmem_head is searched to
see if a physical page already holds the page of the fobj needed. If so the pgt is updated to map the physical page at
the appropriate locatation. If no physical page was holding the page a new physical page is allocated, initialized and
finally mapped.

In order to make as few updates to mappings as possible changes to less restricted, no access -> read-only or read-
only to read-write, is done only for the virtual address was used when the page fault occurred. Changes in the other
direction has to be done in all translation tables used to map the physical page.

2.1.5 Stacks

Different stacks are used during different stages. The stacks are:

• Secure monitor stack (128 bytes), bound to the CPU. Only available if OP-TEE is compiled with a secure
monitor always the case if the target is Armv7-A but never for Armv8-A.

• Temp stack (small ~1KB), bound to the CPU. Used when transitioning from one state to another. Interrupts are
always disabled when using this stack, aborts are fatal when using the temp stack.

• Abort stack (medium ~2KB), bound to the CPU. Used when trapping a data or pre-fetch abort. Aborts from
user space are never fatal the TA is only killed. Aborts from kernel mode are used by the pager to do the demand
paging, if pager is disabled all kernel mode aborts are fatal.

• Thread stack (large ~8KB), not bound to the CPU instead used by the current thread/task. Interrupts are usually
enabled when using this stack.

Notes for Armv7-A/AArch32

Stack Comment
Temp Assigned to SP_SVC during entry/exit, always assigned to SP_IRQ and SP_FIQ
Abort Always assigned to SP_ABT
Thread Assigned to SP_SVC while a thread is active
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Notes for AArch64 There are only two stack pointers, SP_EL1 and SP_EL0, available for OP-TEE in
AArch64. When an exception is received stack pointer is always SP_EL1 which is used temporar-
ily while assigning an appropriate stack pointer for SP_EL0. SP_EL1 is always assigned the value of
thread_core_local[cpu_id]. This structure has some spare space for temporary storage of registers
and also keeps the relevant stack pointers. In general when we talk about assigning a stack pointer to the CPU
below we mean SP_EL0.

Boot

During early boot the CPU is configured with the temp stack which is used until OP-TEE exits to normal world the
first time.

Notes for AArch64 SPSEL is always 0 on entry/exit to have SP_EL0 acting as stack pointer.

Normal entry

Each time OP-TEE is entered from normal world the temp stack is used as the initial stack. For fast calls, this is the
only stack used. For normal calls an empty thread slot is selected and the CPU switches to that stack.

Normal exit

Normal exit occurs when a thread has finished its task and the thread is freed. When the main thread function,
tee_entry_std(...), returns interrupts are disabled and the CPU switches to the temp stack instead. The thread
is freed and OP-TEE exits to normal world.

RPC exit

RPC exit occurs when OP-TEE need some service from normal world. RPC can currently only be performed with a
thread is in running state. RPC is initiated with a call to thread_rpc(...) which saves the state in a way that
when the thread is restored it will continue at the next instruction as if this function did a normal return. CPU switches
to use the temp stack before returning to normal world.

Foreign interrupt exit

Foreign interrupt exit occurs when OP-TEE receives a foreign interrupt. For Arm GICv2 mode, foreign interrupt
is sent as IRQ which is always handled in normal world. Foreign interrupt exit is similar to RPC exit but it is
thread_irq_handler(...) and elx_irq(...) (respectively for Armv7-A/Aarch32 and for Aarch64) that
saves the thread state instead. The thread is resumed in the same way though. For Arm GICv3 mode, foreign interrupt
is sent as FIQ which could be handled by either secure world (EL3 in AArch64) or normal world. This mode is not
supported yet.

Notes for Armv7-A/AArch32 SP_IRQ is initialized to temp stack instead of a separate stack. Prior to exiting to
normal world CPU state is changed to SVC and temp stack is selected.

Notes for AArch64 SP_EL0 is assigned temp stack and is selected during IRQ processing. The original SP_EL0 is
saved in the thread context to be restored when resuming.

Resume entry

OP-TEE is entered using the temp stack in the same way as for normal entry. The thread to resume is looked up and
the state is restored to resume execution. The procedure to resume from an RPC exit or an foreign interrupt exit is
exactly the same.
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Syscall

Syscall’s are executed using the thread stack.

Notes for Armv7-A/AArch32 Nothing special SP_SVC is already set with thread stack.

Notes for syscall AArch64 Early in the exception processing the original SP_EL0 is saved in struct
thread_svc_regs in case the TA is executed in AArch64. Current thread stack is assigned to SP_EL0
which is then selected. When returning SP_EL0 is assigned what is in struct thread_svc_regs.
This allows tee_svc_sys_return_helper(...) having the syscall exception handler return directly
to thread_unwind_user_mode(...).

2.1.6 Shared Memory

Shared Memory is a block of memory that is shared between the non-secure and the secure world. It is used to transfer
data between both worlds.

The shared memory is allocated and managed by the non-secure world, i.e. the Linux OP-TEE driver. Secure world
only considers the individual shared buffers, not their pool. Each shared memory is referenced with associated at-
tributes:

• Buffer start address and byte size,

• Cache attributes of the shared memory buffer,

• List of chunks if mapped from noncontiguous pages.

Shared memory buffer references manipulated must fit inside one of the shared memory areas known from the OP-
TEE core. OP-TEE supports two kinds of shared memory areas: a mandatory area for contiguous buffers an optional
extra memory areas for noncontiguous buffers.

Contiguous shared buffers

Configuration directives CFG_SHMEM_START and CFG_SHMEM_SIZE define a share memory area where shared
memory buffers are contiguous. Generic memory layout registers it as the MEM_AREA_NSEC_SHM memory area.

The non-secure world issues OPTEE_SMC_GET_SHM_CONFIG to retrieve contiguous shared memory area configu-
ration:

• Physical address of the start of the pool

• Size of the pool

• Whether or not the memory is cached

Contiguous shared memory (also known as static or reserved shared memory) is enabled with the configuration flag
CFG_CORE_RESERVED_SHM=y.

Noncontiguous shared buffers

To benefit from noncontiguous shared memory buffers, secure world register dynamic shared memory areas and non-
secure world must register noncontiguous buffers prior to referring to them using the OP-TEE API.

The OP-TEE core generic boot sequence discovers dynamic shared areas from the device tree and/or areas explicitly
registered by the platform.
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Non-secure side needs to register buffers as 4kByte chunks lists into OP-TEE core using the
OPTEE_MSG_CMD_REGISTER_SHM API prior referencing to them using the OP-TEE invocation API.

Noncontiguous shared memory (also known as dynamic shared memory) is enabled with the configuration flag
CFG_CORE_DYN_SHM=y.

Shared Memory Chunk Allocation

It is the Linux kernel driver for OP-TEE that is responsible for allocating chunks of shared memory. OP-TEE
linux kernel driver relies on linux kernel generic allocation support (CONFIG_GENERIC_ALLOCATION) to allo-
cation/release of shared memory physical chunks. OP-TEE linux kernel driver relies on linux kernel dma-buf support
(CONFIG_DMA_SHARED_BUFFER) to track shared memory buffers references.

Using shared memory

From the Client Application The client application can ask for shared memory allocation using the GlobalPlatform
Client API function TEEC_AllocateSharedMemory(...). The client application can also register a
memory through the GlobalPlatform Client API function TEEC_RegisterSharedMemory(...). The
shared memory reference can then be used as parameter when invoking a trusted application.

From the Linux Driver Occasionally the Linux kernel driver needs to allocate shared memory for the communica-
tion with secure world, for example when using buffers of type TEEC_TempMemoryReference.

From OP-TEE core In case OP-TEE core needs information from TEE supplicant (dynamic TA loading, REE time
request,. . . ), shared memory must be allocated. Allocation depends on the use case. OP-TEE core asks for the
following shared memory allocation:

• optee_msg_arg structure, used to pass the arguments to the non-secure world, where the allocation
will be done by sending a OPTEE_SMC_RPC_FUNC_ALLOC message.

• In some cases, a payload might be needed for storing the result from TEE supplicant, for ex-
ample when loading a Trusted Application. This type of allocation will be done by send-
ing the message OPTEE_MSG_RPC_CMD_SHM_ALLOC(OPTEE_MSG_RPC_SHM_TYPE_APPL,...
), which then will return:

– the physical address of the shared memory

– a handle to the memory, that later on will be used later on when freeing this memory.

From TEE Supplicant TEE supplicant is also working with shared memory, used to exchange data between normal
and secure worlds. TEE supplicant receives a memory address from the OP-TEE core, used to store the data.
This is for example the case when a Trusted Application is loaded. In this case, TEE supplicant must register
the provided shared memory in the same way a client application would do, involving the Linux driver.

2.1.7 SMC

SMC Interface

OP-TEE’s SMC interface is defined in two levels using optee_smc.h and optee_msg.h. The former file defines SMC
identifiers and what is passed in the registers for each SMC. The latter file defines the OP-TEE Message protocol
which is not restricted to only SMC even if that currently is the only option available.
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SMC communication

The main structure used for the SMC communication is defined in struct optee_msg_arg (in optee_msg.h). If
we are looking into the source code, we could see that communication mainly is achieved using optee_msg_arg
and thread_smc_args (in thread.h), where optee_msg_arg could be seen as the main structure. What will
happen is that the Linux kernel TEE framework driver will get the parameters either from optee_client or directly from
an internal service in Linux kernel. The TEE driver will populate the struct optee_msg_arg with the parameters
plus some additional bookkeeping information. Parameters for the SMC are passed in registers 1 to 7, register 0 holds
the SMC id which among other things tells whether it is a standard or a fast call.

2.1.8 Thread handling

OP-TEE core uses a couple of threads to be able to support running jobs in parallel (not fully enabled!). There are
handlers for different purposes. In thread.c you will find a function called thread_init_primary(...) which
assigns init_handlers (functions) that should be called when OP-TEE core receives standard or fast calls, FIQ
and PSCI calls. There are default handlers for these services, but the platform can decide if they want to implement
their own platform specific handlers instead.

Synchronization primitives

OP-TEE has three primitives for synchronization of threads and CPUs: spin-lock, mutex, and condvar.

Spin-lock A spin-lock is represented as an unsigned int. This is the most primitive lock. Interrupts should be
disabled before attempting to take a spin-lock and should remain disabled until the lock is released. A spin-lock
is initialized with SPINLOCK_UNLOCK.

Table 1: Spin lock functions
Function Purpose
cpu_spin_lock(.
..)

Locks a spin-lock

cpu_spin_trylock(.
..)

Locks a spin-lock if unlocked and returns 0 else the spin-lock is unchanged and the func-
tion returns !0

cpu_spin_unlock(.
..)

Unlocks a spin-lock

Mutex A mutex is represented by struct mutex. A mutex can be locked and unlocked with interrupts enabled
or disabled, but only from a normal thread. A mutex cannot be used in an interrupt handler, abort handler or
before a thread has been selected for the CPU. A mutex is initialized with either MUTEX_INITIALIZER or
mutex_init(...).

Table 2: Mutex functions
Function Purpose
mutex_lock(.
..)

Locks a mutex. If the mutex is unlocked this is a fast operation, else the function issues an
RPC to wait in normal world.

mutex_unlock(.
..)

Unlocks a mutex. If there is no waiters this is a fast operation, else the function issues an
RPC to wake up a waiter in normal world.

mutex_trylock(.
..)

Locks a mutex if unlocked and returns true else the mutex is unchanged and the function
returns false.

mutex_destroy(.
..)

Asserts that the mutex is unlocked and there is no waiters, after this the memory used by
the mutex can be freed.
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When a mutex is locked it is owned by the thread calling mutex_lock(...) or mutex_trylock(...),
the mutex may only be unlocked by the thread owning the mutex. A thread should not exit to TA user space
when holding a mutex.

Condvar A condvar is represented by struct condvar. A condvar is similar to a pthread_condvar_t in
the pthreads standard, only less advanced. Condition variables are used to wait for some condition to be fulfilled
and are always used together a mutex. Once a condition variable has been used together with a certain mutex, it
must only be used with that mutex until destroyed. A condvar is initialized with CONDVAR_INITIALIZER or
condvar_init(...).

Table 3: Condvar functions
Function Purpose
condvar_wait(.
..)

Atomically unlocks the supplied mutex and waits in normal world via an RPC for the
condition variable to be signaled, when the function returns the mutex is locked again.

condvar_signal(.
..)

Wakes up one waiter of the condition variable (waiting in condvar_wait(...)).

condvar_broadcast(.
..)

Wake up all waiters of the condition variable.

The caller of condvar_signal(...) or condvar_broadcast(...) should hold the mutex associated
with the condition variable to guarantee that a waiter does not miss the signal.

2.2 Cryptographic implementation

This document describes how the TEE Cryptographic Operations API is implemented, how the default crypto provider
may be configured at compile time, and how it may be replaced by another implementation.

2.2.1 Overview

There are several layers from the Trusted Application to the actual crypto algorithms. Most of the crypto code runs in
kernel mode inside the TEE core. Here is a schematic view of a typical call to the crypto API. The numbers in square
brackets ([1], [2]. . . ) refer to the sections below.

- some_function() (Trusted App) -
[1] TEE_*() User space (libutee.a)
------- utee_*() ----------------------------------------------
[2] tee_svc_*() Kernel space
[3] crypto_*() (libtomcrypt.a and crypto.c)
[4] /* LibTomCrypt */ (libtomcrypt.a)

2.2.2 [1] The TEE Cryptographic Operations API

OP-TEE implements the Cryptographic Operations API defined by the GlobalPlatform association in the TEE In-
ternal Core API. This includes cryptographic functions that span various cryptographic needs: message digests,
symmetric ciphers, message authentication codes (MAC), authenticated encryption, asymmetric operations (encryp-
tion/decryption or signing/verifying), key derivation, and random data generation. These functions make up the TEE
Cryptographic Operations API.

The Internal API is implemented in tee_api_operations.c, which is compiled into a static library: ${O}/
ta_arm{32,64}-lib/libutee/libutee.a.

2.2. Cryptographic implementation 43

https://github.com/OP-TEE/optee_os/blob/master/lib/libutee/tee_api_operations.c


OP-TEE Documentation

Most API functions perform some parameter checking and manipulations, then invoke some utee_* function to switch
to kernel mode and perform the low-level work.

The utee_* functions are declared in utee_syscalls.h and implemented in utee_syscalls_asm.S They are simple system
call wrappers which use the SVC instruction to switch to the appropriate system service in the OP-TEE kernel.

2.2.3 [2] The crypto services

All cryptography-related system calls are declared in tee_svc_cryp.h and implemented in tee_svc_cryp.c. In addition
to dealing with the usual work required at the user/kernel interface (checking parameters and copying memory buffers
between user and kernel space), the system calls invoke a private abstraction layer: the Crypto API, which is declared
in crypto.h. It serves two main purposes:

1. Allow for alternative implementations, such as hardware-accelerated versions.

2. Provide an easy way to disable some families of algorithms at compile-time to save space. See LibTomCrypt
below.

2.2.4 [3] crypto_*()

The crypto_*() functions implement the actual algorithms and helper functions. TEE Core has one global active
implementation of this interface. The default implementation, mostly based on LibTomCrypt, is as follows:

Listing 1: File: core/crypto/crypto.c

/*
* Default implementation for all functions in crypto.h

*/

#if !defined(_CFG_CRYPTO_WITH_HASH)
TEE_Result crypto_hash_get_ctx_size(uint32_t algo __unused,

size_t *size __unused)
{

return TEE_ERROR_NOT_IMPLEMENTED;
}
...
#endif /*_CFG_CRYPTO_WITH_HASH*/

Listing 2: File: core/lib/libtomcrypt/tee_ltc_provider.c

#if defined(_CFG_CRYPTO_WITH_HASH)
TEE_Result crypto_hash_get_ctx_size(uint32_t algo, size_t *size)
{

/* ... */
return TEE_SUCCESS;

}

#endif /*_CFG_CRYPTO_WITH_HASH*/

As shown above, families of algorithms can be disabled and crypto.c will provide default null implementations that
will return TEE_ERROR_NOT_IMPLEMENTED.

2.2.5 Public/private key format

crypto.h uses implementation-specific types to hold key data for asymmetric algorithms. For instance, here is how a
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public RSA key is represented:

Listing 3: File: core/include/crypto/crypto.h

struct rsa_public_key {
struct bignum *e; /* Public exponent */
struct bignum *n; /* Modulus */

};

This is also how such keys are stored inside the TEE object attributes (TEE_ATTR_RSA_PUBLIC_KEY in this
case). struct bignum is an opaque type, known to the underlying implementation only. struct bignum_ops
provides functions so that the system services can manipulate data of this type. This includes allocation/deallocation,
copy, and conversion to or from the big endian binary format.

Listing 4: File: core/include/crypto/crypto.h

struct bignum *crypto_bignum_allocate(size_t size_bits);

TEE_Result crypto_bignum_bin2bn(const uint8_t *from, size_t fromsize,
struct bignum *to);

void crypto_bignum_bn2bin(const struct bignum *from, uint8_t *to);
/*...*/

2.2.6 [4] LibTomCrypt

Some algorithms may be disabled at compile time if they are not needed, in order to reduce the size of the OP-TEE
image and reduces its memory usage. This is done by setting the appropriate configuration variable. For example:

$ make CFG_CRYPTO_AES=n # disable AES only
$ make CFG_CRYPTO_{AES,DES}=n # disable symmetric ciphers
$ make CFG_CRYPTO_{DSA,RSA,DH,ECC}=n # disable public key algorithms
$ make CFG_CRYPTO=n # disable all algorithms

Please refer to core/lib/libtomcrypt/sub.mk for the list of all supported variables.

Note that the application interface is not modified when algorithms are disabled. This means, for in-
stance, that the functions TEE_CipherInit(), TEE_CipherUpdate() and TEE_CipherFinal() would
remain present in libutee.a even if all symmetric ciphers are disabled (they would simply return
TEE_ERROR_NOT_IMPLEMENTED).

2.2.7 Add a new crypto implementation

To add a new implementation, the default one in core/lib/libtomcrypt in combination with what is in core/crypto should
be used as a reference. Here are the main things to consider when adding a new crypto provider:

• Put all the new code in its own directory under core/lib unless it is code that will be used regardless of which
crypto provider is in use. How we are dealing with AES-GCM in core/crypto could serve as an example.

• Avoid modifying tee_svc_cryp.c. It should not be needed.

• Although not all crypto families need to be defined, all are required for compliance to the GlobalPlatform
specification.

• If you intend to make some algorithms optional, please try to re-use the same names for configuration variables
as the default implementation.
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2.3 Device Tree

OP-TEE core can use the device tree format to inject platform configuration information during platform initialization
and possibly some run time contexts.

Device Tree technology allows to describe platforms from ASCII source files so-called DTS files. These can be used
to generate a platform description binary image, so-called DTB, embedded in the platform boot media for applying
expected configuration settings during the platform initializations.

This scheme relaxes design constraints on the OP-TEE core implementation as most of the platform specific hardware
can be tuned without modifying C source files or adding configuration directives in the build environments.

2.3.1 Secure and Non-Secure Device Trees

There can be several device trees embedded in the target system and some can be shared across the boot stages.

• Boot loader stages may load a device tree structure in memory for all boot stage to get platform configuration
from. If such device tree data are to be accessed by the non-secure world, they shall be located in non-secure
memory. Secure world may use its content during OP-TEE core initialization.

• Boot loader stages may load a device tree structure in secure memory for the benefit of the secure world only.
Such device tree blob shall be located in secure memory. Secure world could use its content but this is currently
not implemented in the latest OP-TEE release.

• OP-TEE core can also embedded a device tree structure to describe the platform.

• Non-secure world can embed its own device tree structure(s) and/or rely on a device tree structure loaded by the
secure world during its initialization which happen before non-secure world is booted.

Obviously the non-secure world will not be able to access a device tree image located in a secure memory which
non-secure world has no access to.

When OP-TEE core is built with CFG_DT=y, non-secure and secure device trees can be accessed by OP-TEE core to
get some platform configuration information.

2.3.2 Generic boot and DTBs

Generic boot sequence gets discovers main memory address ranges from preferrably embedded DTB (section Embed-
ded Secure Device Tree), defaulting to early boot external DTB (section Early boot external device tree).

Generic boot uses early boot external DTB (section Early boot external device tree) to share platform configuration
information with the non-secure world.

Plaform and drivers can call OP-TEE DT API (core/include/kernel/dt.h) to access embedded and/or exter-
nal DTBs.

2.3.3 Early boot external device tree

The bootloader provides arguments to OP-TEE core when it boots it. Among those, the physical memory base address
of a non-secure device tree image accessible to OP-TEE core, or a null address value in absence of such DTB.

Platform configuration may statically define such DTB location using the build configuration directive
CFG_DT_ADDR.

When an external DTB is referred, OP-TEE core gets the console configuration if the platform has registered a com-
patible driver by adding attribute __dt_driver to a defined const struct dt_driver instance.
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When an external DTB is referred, OP-TEE core adds into this DTB the description of some OP-TEE resources. These
information can be used by the non-secure world to properly communicate with OP-TEE. This scheme assumes the
image is located in non-secure memory.

Modifications made by OP-TEE core on the non-secure device tree image provided by early boot and passed to non-
secure world are the following:

• Add an OP-TEE node if none found with the related invocation parameters.

• Add a reserved memory node for the few memory areas that shall be reserved to the secure world and non
accessed by the non-secure world.

• Add a PSCI description node if none found.

Early boot DTB can be accessed by OP-TEE core only during its initialization, before non-secure world boots as it is
expected the DTB memory location has likely been replaced with runtime contexts content.

Assuming there is no embedded DTB (section Embedded Secure Device Tree) OP-TEE core discovers the main mem-
ory address ranges from the non-secure DTB.

2.3.4 Early boot device tree overlay

There are two possibilities for OP-TEE core to provide a device tree overlay to the non-secure world.

• Append OP-TEE nodes to an existing DTB overlay located in early boot DTB. (CFG_DT_ADDR or boot argu-
ment register R2/X2).

• Generate a new DTB overlay image at location defined by CFG_DT_ADDR.

In the later case, memory referred by configuration directive CFG_DT_ADDR shall not contain a valid DTB image
when OP-TEE core is booted. A subsequent non-secure boot stage should merge the OP-TEE DTB overlay image into
another DTB.

A typical bootflow for this would be Trusted Firmware-A -> OP-TEE -> U-Boot with U-Boot in charge of merging
OP-TEE DTB overlay located at CFG_DT_ADDR into a DTB U-Boot has loaded from elsewhere.

This functionality is enabled when CFG_EXTERNAL_DTB_OVERLAY=y.

2.3.5 Embedded Secure Device Tree

When OP-TEE core is built with configuration directive CFG_EMBED_DTB=y, directive
CFG_EMBED_DTB_SOURCE_FILE shall provide the relative path of the DTS file inside directory core/
arch/$(ARCH)/dts from which a DTB is generated and embedded in a read-only section of OP-TEE core.

Refer to core/include/kernel/dt.h for API to access embedded DTB.

Section Generic boot and DTBs documents the generic boot sequence against embedded DTB.

2.4 File structure

This page describes what different folders in optee_os contains.
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2.4.1 Top level directories

Table 4: Top level directories
Directory Description
/core Files that are only used building TEE Core
/lib Files that are used both when building TEE Core and TAs
/ta Files that are only used when building TAs
/mk Makefiles supporting the build system
/tmp-stuff Temporary stuff that will be removed before the final commit is made
/scripts Helper scripts for miscellaneous tasks
/out Created when building unless a different out directory is specified with O=... on the command

line

2.4.2 /core

Table 5: Structure of /core
Directory Description
/arch Architecture and platform specific files
/include Header files of resources exported by the core
/lib Generic libraries that are likely to be replaced in a final product
/mm Generic memory management, currently empty
/tee Generic TEE files

2.4.3 /core/arch

Table 6: Structure of /core/arch
Directory Description
/arm ARMv7 and Aarch32 specific architecture and platform specific files

2.4.4 /core/arch/arm

Table 7: Structure of /core/arch/arm
Directory Description
/dts Device tree source files
/include Include files used in rest of TEE core but not in any supporting libraries
/kern Low level and core parts of TEE Core
/mm Memory management
/tee TEE files
/sm Secure Monitor
/plat-foo Specific files for the foo platform
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2.4.5 /core/arch/arm/include

Table 8: Structure of /core/arch/arm/include
Directory Description
/kern Include files exposing API for /core/arch/arm/kern files
/kta Include files exposing the KTA API that is mainly used by kernel TAs
/mm Include files exposing API for /core/arch/arm/mm files
/rom Old ROM files that should be removed before going public
/sm Include files exposing API for Secure Monitor

2.4.6 /core/include

Table 9: Structure of /core/include
Directory Description
/drivers Include files exposing API for /core/drivers files
/dt-bindings Include files for the device tree bindings

2.4.7 /core/lib/lib{crypto,sla}

Table 10: Structure of /core/lib/lib{crypto,sla}
Directory Description
/ Source files for the library
/include Include files exposing the API of the library

2.4.8 /lib/libutils

Table 11: Structure of /lib/libutils
Directory Description
/ Source file for the library
/arch Architecture specific source files
/arch/arm ARMv7 and Aarch32 specific source files
/arch/arm/include ARMv7 and Aarch32 specific include files
/include Include files exposing the API of the library

2.5 GlobalPlatform API

2.5.1 Introduction

GlobalPlatform works across industries to identify, develop and publish specifications which facilitate the secure and
interoperable deployment and management of multiple embedded applications on secure chip technology. OP-TEE
has support for GlobalPlatform TEE Client API Specification v1.0 (GPD_SPE_007) and TEE Internal Core API
Specification v1.1.2 (GPD_SPE_010).
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2.5.2 TEE Client API

The TEE Client API describes and defines how a client running in a rich operating environment (REE) should commu-
nicate with the TEE. To identify a Trusted Application (TA) to be used, the client provides an UUID. All TA’s exposes
one or several functions. Those functions corresponds to a so called commandID which also is sent by the client.

TEE Contexts

The TEE Context is used for creating a logical connection between the client and the TEE. The context must be
initialized before the TEE Session can be created. When the client has completed a job running in secure world, it
should finalize the context and thereby also release resources.

TEE Sessions

Sessions are used to create logical connections between a client and a specific Trusted Application. When the session
has been established the client has opened up the communication channel towards the specified Trusted Application
identified by the UUID. At this stage the client and the Trusted Application can start to exchange data.

TEE Client API example / usage

Below you will find the main functions as defined by GlobalPlatform and are used in the communication between the
client and the TEE.

TEEC_Result TEEC_InitializeContext(
const char* name,
TEEC_Context* context)

void TEEC_FinalizeContext(
TEEC_Context* context)

TEEC_Result TEEC_OpenSession (
TEEC_Context* context,
TEEC_Session* session,
const TEEC_UUID* destination,
uint32_t connectionMethod,
const void* connectionData,
TEEC_Operation* operation,
uint32_t* returnOrigin)

void TEEC_CloseSession (
TEEC_Session* session)

TEEC_Result TEEC_InvokeCommand(
TEEC_Session* session,
uint32_t commandID,
TEEC_Operation* operation,
uint32_t* returnOrigin)

In principle the commands are called in this order:

TEEC_InitializeContext(...)
TEEC_OpenSession(...)
TEEC_InvokeCommand(...)

(continues on next page)
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(continued from previous page)

TEEC_CloseSession(...)
TEEC_FinalizeContext(...)

It is not uncommon that TEEC_InvokeCommand(...) is called several times in a row when the session has been
established.

For a complete example, please see chapter 5.2 Example 1: Using the TEE Client API in the GlobalPlatform TEE
Client API Specification v1.0.

2.5.3 TEE Internal Core API

The Internal Core API is the API that is exposed to the Trusted Applications running in the secure world. The TEE
Internal API consists of four major parts:

1. Trusted Storage API for Data and Keys

2. Cryptographic Operations API

3. Time API

4. Arithmetical API

Examples / usage

Calling the Internal Core API is done in the same way as described above using Client API. The best place to find
information how this should be done is in the TEE Internal Core API Specification v1.1.2 which contains many
examples of how to call the various APIs. One can also have a look at the examples in the optee_examples git.

2.5.4 Extensions

In addition to what is stated in TEE Internal Core API, there are some non-official extensions in OP-TEE.

Trusted Applications should include header file tee_api_defines_extensions.h to import the definitions
of the extensions. For each extension, a configuration directive prefixed CFG_ allows one to disable support for the
extension when building the OP-TEE packages.

Cache Maintenance Support

Following functions have been introduced in order to allow Trusted Applications to operate with the data cache:

TEE_Result TEE_CacheClean(char *buf, size_t len);
TEE_Result TEE_CacheFlush(char *buf, size_t len);
TEE_Result TEE_CacheInvalidate(char *buf, size_t len);

These functions are available to any Trusted Application defined with the flag TA_FLAG_CACHE_MAINTENANCE
sets on, see Cache maintenance Flag. When not set, each function returns the error code
TEE_ERROR_NOT_SUPPORTED. Within these extensions, a Trusted Application is able to operate on the
data cache, with the following specification:
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Function Description
TEE_CacheClean()Write back to memory any dirty data cache lines. The line is marked as not dirty. The valid bit is

unchanged.
TEE_CacheFlush()Purges any valid data cache lines. Any dirty cache lines are first written back to memory, then the

cache line is invalidated.
TEE_CacheInvalidate()Invalidate any valid data cache lines. Any dirty line are not written back to memory.

In the following two cases, the error code TEE_ERROR_ACCESS_DENIED is returned:

• The memory range has not the write access, that is TEE_MEMORY_ACCESS_WRITE is not set.

• The memory is not user space memory.

You may disable this extension by setting the following configuration variable in conf.mk:

CFG_CACHE_API := n

PKCS#1 v1.5 RSASSA without hash OID

This extension adds identifer‘‘TEE_ALG_RSASSA_PKCS1_V1_5‘‘ to allow signing and verifying messages with
RSASSA-PKCS1-v1_5, in RFC 3447, without including the OID of the hash in the signature. You may disable this
extension by setting the following configuration variable in conf.mk:

CFG_CRYPTO_RSASSA_NA1 := n

The TEE Internal Core API was extended with a new algorithm descriptor.

Algorithm Possible Modes
TEE_ALG_RSASSA_PKCS1_V1_5TEE_MODE_SIGN / TEE_MODE_VERIFY

Algorithm Identifier
TEE_ALG_RSASSA_PKCS1_V1_50xF0000830

Concat KDF

Support for the Concatenation Key Derivation Function (Concat KDF) according to SP 800-56A (Recommendation
for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography) can be found in OP-TEE. You
may disable this extension by setting the following configuration variable in conf.mk:

CFG_CRYPTO_CONCAT_KDF := n

Implementation notes

All key and parameter sizes must be multiples of 8 bits. That is:

• Input parameters: the shared secret (Z) and OtherInfo.

• Output parameter: the derived key (DerivedKeyingMaterial).

In addition, the maximum size of the derived key is limited by the size of an object of type
TEE_TYPE_GENERIC_SECRET (512 bytes). This implementation does not enforce any requirement on the content
of the OtherInfo parameter. It is the application’s responsibility to make sure this parameter is constructed as
specified by the NIST specification if compliance is desired.
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API extension

To support Concat KDF, the TEE Internal Core API v1.1 was extended with new algorithm descriptors, new object
types, and new object attributes as described below.

p.95 Add new object type to TEE_PopulateTransientObject

The following entry shall be added to Table 5-8:

Object type Parts
TEE_TYPE_CONCAT_KDF_ZThe TEE_ATTR_CONCAT_KDF_Z part (input shared secret) must be provided.

p.121 Add new algorithms for TEE_AllocateOperation

The following entry shall be added to Table 6-3:

Algorithm Possible Modes
TEE_ALG_CONCAT_KDF_SHA1_DERIVE_KEY
TEE_ALG_CONCAT_KDF_SHA224_DERIVE_KEY
TEE_ALG_CONCAT_KDF_SHA256_DERIVE_KEY
TEE_ALG_CONCAT_KDF_SHA384_DERIVE_KEY
TEE_ALG_CONCAT_KDF_SHA512_DERIVE_KEY
TEE_ALG_CONCAT_KDF_SHA512_DERIVE_KEY

TEE_MODE_DERIVE

p.126 Explain usage of HKDF algorithms in TEE_SetOperationKey

In the bullet list about operation mode, the following shall be added:

• For the Concat KDF algorithms, the only supported mode is TEE_MODE_DERIVE.

p.150 Define TEE_DeriveKey input attributes for new algorithms

The following sentence shall be deleted:

The TEE_DeriveKey function can only be used with the algorithm
TEE_ALG_DH_DERIVE_SHARED_SECRET.

The following entry shall be added to Table 6-7:

Algorithm Possible operation parame-
ters

TEE_ALG_CONCAT_KDF_SHA1_DERIVE_KEY
TEE_ALG_CONCAT_KDF_SHA224_DERIVE_KEY
TEE_ALG_CONCAT_KDF_SHA256_DERIVE_KEY
TEE_ALG_CONCAT_KDF_SHA384_DERIVE_KEY
TEE_ALG_CONCAT_KDF_SHA512_DERIVE_KEY
TEE_ALG_CONCAT_KDF_SHA512_DERIVE_KEY

TEE_ATTR_CONCAT_KDF_DKM_LENGTH:
up to 512 bytes. This
parameter is mandatory:
TEE_ATTR_CONCAT_KDF_OTHER_INFO

p.152 Add new algorithm identifiers

The following entries shall be added to Table 6-8:
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Algorithm Identifier
TEE_ALG_CONCAT_KDF_SHA1_DERIVE_KEY 0x800020C1
TEE_ALG_CONCAT_KDF_SHA224_DERIVE_KEY 0x800030C1
TEE_ALG_CONCAT_KDF_SHA256_DERIVE_KEY 0x800040C1
TEE_ALG_CONCAT_KDF_SHA384_DERIVE_KEY 0x800050C1
TEE_ALG_CONCAT_KDF_SHA512_DERIVE_KEY 0x800060C1

p.154 Define new main algorithm

In Table 6-9 in section 6.10.1, a new value shall be added to the value column for row bits [7:0]:

Bits Function Value
Bits [7:0] Identifiy the main underlying algorithm itself . . .

0xC1: Concat KDF

The function column for bits[15:12] shall also be modified to read:

Bits Function Value
Bits [15:12] Define the message digest for asymmetric signature algorithms or Concat KDF

p.155 Add new object type for Concat KDF input shared secret

The following entry shall be added to Table 6-10:

Name Identifier Possible sizes
TEE_TYPE_CONCAT_KDF_Z 0xA10000C1 8 to 4096 bits (multiple of 8)

p.156 Add new operation attributes for Concat KDF

The following entries shall be added to Table 6-11:

Name Value Pro-
tec-
tion

Type Comment

TEE_ATTR_CONCAT_KDF_Z0xC00001C1Pro-
tected

Ref The shared secret (Z)

TEE_ATTR_CONCAT_KDF_OTHER_INFO0xD00002C1Pub-
lic

Ref OtherInfo

TEE_ATTR_CONCAT_KDF_DKM_LENGTH0xF00003C1Pub-
lic

Value The length (in bytes) of the derived keying material to be
generated, maximum 512. This is KeyDataLen / 8.

HKDF

OP-TEE implements the HMAC-based Extract-and-Expand Key Derivation Function (HKDF) as specified in RFC
5869. This file documents the extensions to the TEE Internal Core API v1.1 that were implemented to support this
algorithm. Trusted Applications should include <tee_api_defines_extensions.h> to import the definitions.

Note that the implementation follows the recommendations of version 1.1 of the specification for adding new algo-
rithms. It should make it compatible with future changes to the official specification. You can disable this extension
by setting the following in conf.mk:
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CFG_CRYPTO_HKDF := n

p.95 Add new object type to TEE_PopulateTransientObject

The following entry shall be added to Table 5-8:

Object type Parts
TEE_TYPE_HKDF_IKM The TEE_ATTR_HKDF_IKM (Input Keying Material) part must be provided.

p.121 Add new algorithms for TEE_AllocateOperation

The following entry shall be added to Table 6-3:

Algorithm Pos-
sible
Modes

TEE_ALG_HKDF_MD5_DERIVE_KEY TEE_ALG_HKDF_SHA1_DERIVE_KEY
TEE_ALG_HKDF_SHA224_DERIVE_KEY TEE_ALG_HKDF_SHA256_DERIVE_KEY
TEE_ALG_HKDF_SHA384_DERIVE_KEY TEE_ALG_HKDF_SHA512_DERIVE_KEY
TEE_ALG_HKDF_SHA512_DERIVE_KEY

TEE_MODE_DERIVE

p.126 Explain usage of HKDF algorithms in TEE_SetOperationKey

In the bullet list about operation mode, the following shall be added:

• For the HKDF algorithms, the only supported mode is TEE_MODE_DERIVE.

p.150 Define TEE_DeriveKey input attributes for new algorithms

The following sentence shall be deleted:

The TEE_DeriveKey function can only be used with the algorithm
TEE_ALG_DH_DERIVE_SHARED_SECRET

The following entry shall be added to Table 6-7:

Algorithm Possible operation parameters
TEE_ALG_HKDF_MD5_DERIVE_KEY
TEE_ALG_HKDF_SHA1_DERIVE_KEY
TEE_ALG_HKDF_SHA224_DERIVE_KEY
TEE_ALG_HKDF_SHA256_DERIVE_KEY
TEE_ALG_HKDF_SHA384_DERIVE_KEY
TEE_ALG_HKDF_SHA512_DERIVE_KEY
TEE_ALG_HKDF_SHA512_DERIVE_KEY

TEE_ATTR_HKDF_OKM_LENGTH: Number
of bytes in the Output Keying Material
TEE_ATTR_HKDF_SALT (optional) Salt to be
used during the extract step
TEE_ATTR_HKDF_INFO (optional) Info to be
used during the expand step

p.152 Add new algorithm identifiers

The following entries shall be added to Table 6-8:

Algorithm Identifier
TEE_ALG_HKDF_MD5_DERIVE_KEY 0x800010C0
TEE_ALG_HKDF_SHA1_DERIVE_KEY 0x800020C0
TEE_ALG_HKDF_SHA224_DERIVE_KEY 0x800030C0
TEE_ALG_HKDF_SHA256_DERIVE_KEY 0x800040C0
TEE_ALG_HKDF_SHA384_DERIVE_KEY 0x800050C0
TEE_ALG_HKDF_SHA512_DERIVE_KEY 0x800060C0
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## p.154 Define new main algorithm

In Table 6-9 in section 6.10.1, a new value shall be added to the value column for row bits [7:0]:

Bits Function Value
Bits [7:0] Identifiy the main underlying algorithm itself . . .

0xC0: HKDF

The function column for bits[15:12] shall also be modified to read:

Bits Function Value
Bits [15:12] Define the message digest for asymmetric signature algorithms or HKDF

p.155 Add new object type for HKDF input keying material

The following entry shall be added to Table 6-10:

Name Identifier Possible sizes
TEE_TYPE_HKDF_IKM 0xA10000C0 8 to 4096 bits (multiple of 8)

p.156 Add new operation attributes for HKDF salt and info

The following entries shall be added to Table 6-11:

Name Value ProtectionType Comment
TEE_ATTR_HKDF_IKM 0xC00001C0Protected Ref
TEE_ATTR_HKDF_SALT 0xD00002C0Public Ref
TEE_ATTR_HKDF_INFO 0xD00003C0Public Ref
TEE_ATTR_HKDF_OKM_LENGTH 0xF00004C0Public Value

PBKDF2

This document describes the OP-TEE implementation of the key derivation function, PBKDF2 as specified in RFC
2898 section 5.2. This RFC is a republication of PKCS #5 v2.0 from RSA Laboratories’ Public-Key Cryptography
Standards (PKCS) series. You may disable this extension by setting the following configuration variable in conf.mk:

CFG_CRYPTO_PBKDF2 := n

API extension

To support PBKDF2, the TEE Internal Core API v1.1 was extended with a new algorithm descriptor, new object types,
and new object attributes as described below.

p.95 Add new object type to TEE_PopulateTransientObject

The following entry shall be added to Table 5-8:

Object type Parts
TEE_TYPE_PBKDF2_PASSWORD The TEE_ATTR_PBKDF2_PASSWORD part must be provided.

p.121 Add new algorithms for TEE_AllocateOperation

The following entry shall be added to Table 6-3:
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Algorithm Possible Modes
TEE_ALG_PBKDF2_HMAC_SHA1_DERIVE_KEY TEE_MODE_DERIVE

p.126 Explain usage of PBKDF2 algorithm in TEE_SetOperationKey

In the bullet list about operation mode, the following shall be added:

• For the PBKDF2 algorithm, the only supported mode is TEE_MODE_DERIVE.

p.150 Define TEE_DeriveKey input attributes for new algorithms

The following sentence shall be deleted:

The TEE_DeriveKey function can only be used with the algorithm
TEE_ALG_DH_DERIVE_SHARED_SECRET

The following entry shall be added to Table 6-7:

Algorithm Possible operation parameters
TEE_ALG_PBKDF2_HMAC_SHA1_DERIVE_KEYTEE_ATTR_PBKDF2_DKM_LENGTH: up to 512 bytes. This parameter is manda-

tory.
TEE_ATTR_PBKDF2_SALT
TEE_ATTR_PBKDF2_ITERATION_COUNT: This parameter is mandatory.

p.152 Add new algorithm identifiers

The following entries shall be added to Table 6-8:

Algorithm Identifier
TEE_ALG_PBKDF2_HMAC_SHA1_DERIVE_KEY 0x800020C2

p.154 Define new main algorithm

In Table 6-9 in section 6.10.1, a new value shall be added to the value column for row bits [7:0]:

Bits Function Value
Bits [7:0] Identifiy the main underlying algorithm itself . . .

0xC2: PBKDF2

The function column for bits[15:12] shall also be modified to read:

Bits Function Value
Bits [15:12] Define the message digest for asymmetric signature algorithms or PBKDF2

p.155 Add new object type for PBKDF2 password

The following entry shall be added to Table 6-10:

Name Identifier Possible sizes
TEE_TYPE_PBKDF2_PASSWORD 0xA10000C2 8 to 4096 bits (multiple of 8)

p.156 Add new operation attributes for Concat KDF

The following entries shall be added to Table 6-11:
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Name Value ProtectionType Comment
TEE_ATTR_PBKDF2_PASSWORD 0xC00001C2Protected Ref
TEE_ATTR_PBKDF2_SALT 0xD00002C2Public Ref
TEE_ATTR_PBKDF2_ITERATION_COUNT0xF00003C2Public Value
TEE_ATTR_PBKDF2_DKM_LENGTH 0xF00004C2Public Value The length (in bytes) of the derived key-

ing material to be generated, maximum
512.

2.6 Libraries

2.6.1 libutee

The TEE Internal Core API describes services that are provided to Trusted Applications. libutee is a library that
implements this API.

libutee is a static library the Trusted Applications shall statically link against. Trusted Applications do execute in
non-privileged secure userspace and libutee also aims at being executed in the non-privileged secure userspace.

Some services for this API are fully statically implemented inside the libutee library while some services for the API
are implemented inside the OP-TEE core (privileged level) and libutee calls such services through system calls.

2.6.2 libmpa

Now deprectated, used to the the BigNum library in OP-TEE.

2.7 Porting guidelines

This document serves a dual purpose:

• Serve as a base for getting OP-TEE up and running on a new device with initial xtest validation passing. This is
the first part of this document (section 2).

• Highlight the missing pieces if you intend to make a real secure product, that is what the second part of this
document is about.

We are trying our best to implement full end to end security in OP-TEE in a generic way, but due to the nature of
devices being different, NDA etc, it is not always possible for us to do so and in those cases, we most often try to
write a generic API, but we will just stub the code. This porting guideline highlights the missing pieces that must be
addressed in a real secure consumer device. Hopefully we will sooner or later get access to devices where we at least
can make reference implementations publicly available to everyone for the missing pieces we are talking about here.

2.7.1 Add a new platform

The first thing you need to do after you have decided to port OP-TEE to another device is to add a new platform device.
That can either be adding a new platform variant (PLATFORM_FLAVOR) if it is a device from a family already
supported, or it can be a brand new platform family (PLATFORM). Typically this initial setup involve configuring
UART, memory addresses etc. For simplicity let us call our fictive platform for “gendev” just so we have something
to refer to when writing examples further down.
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core/arch/arm

In core/arch/arm you will find all the currently supported devices. That is where you are supposed to add a new
platform or modify an existing one. Typically you will find this set of files in a specific platform folder:

$ ls
conf.mk main.c platform_config.h sub.mk

So for the gendev platform it means that the files should be placed in this folder:

core/arch/arm/plat-gendev

conf.mk

This is the device specific makefile where you define configurations unique to your platform. This mainly comprises
two things: - OP-TEE configuration variables (CFG_), which may be assigned values in two ways. CFG_FOO ?=
bar should be used to provide a default value that may be modified at compile time. On the other hand, variables that
must be set to some value and cannot be modified should be set by: $(call force,CFG_FOO,bar). - Compiler
flags for the TEE core, the user mode libraries and the Trusted Applications, which may be added to macros used by
the build system. Please see Platform-specific configuration and flags in the build system documentation.

It is recommended to use a existing platform configuration file as a starting point. For instance, core/arch/arm/plat-
hikey/conf.mk.

The platform conf.mk file should at least define the default platform flavor for the platform, the core configurations
(architecture and number of cores), the main configuration directives (generic boot, arm trusted firmware support,
generic time source, console driver, etc. . . ) and some platform default configuration settings.

PLATFORM_FLAVOR ?= hikey

include core/arch/arm/cpu/cortex-armv8-0.mk

$(call force,CFG_TEE_CORE_NB_CORE,8)
$(call force,CFG_GENERIC_BOOT,y)
$(call force,CFG_PL011,y)
$(call force,CFG_PM_STUBS,y)
$(call force,CFG_SECURE_TIME_SOURCE_CNTPCT,y)
$(call force,CFG_WITH_ARM_TRUSTED_FW,y)
$(call force,CFG_WITH_LPAE,y)

ta-targets = ta_arm32
ta-targets += ta_arm64

CFG_NUM_THREADS ?= 8
CFG_CRYPTO_WITH_CE ?= y
CFG_WITH_STACK_CANARIES ?= y
CFG_CONSOLE_UART ?= 3
CFG_DRAM_SIZE_GB ?= 2

main.c

This platform specific file will contain power management handlers and code related to the UART. We will talk more
about the information related to the handlers further down in this document. For our gendev device it could look like
this (here we are excluding the necessary license header to save some space):

#include <console.h>
#include <drivers/serial8250_uart.h>
#include <kernel/generic_boot.h>

(continues on next page)
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(continued from previous page)

#include <kernel/panic.h>
#include <kernel/pm_stubs.h>
#include <mm/core_mmu.h>
#include <platform_config.h>
#include <stdint.h>
#include <tee/entry_fast.h>
#include <tee/entry_std.h>

static void main_fiq(void)
{

panic();
}

static const struct thread_handlers handlers = {
.std_smc = tee_entry_std,
.fast_smc = tee_entry_fast,
.nintr = main_fiq,
.cpu_on = cpu_on_handler,
.cpu_off = pm_do_nothing,
.cpu_suspend = pm_do_nothing,
.cpu_resume = pm_do_nothing,
.system_off = pm_do_nothing,
.system_reset = pm_do_nothing,

};

const struct thread_handlers *generic_boot_get_handlers(void)
{

return &handlers;
}

/*
* Register the physical memory area for peripherals etc. Here we are

* registering the UART console.

*/
register_phys_mem(MEM_AREA_IO_NSEC, CONSOLE_UART_BASE, SERIAL8250_UART_REG_SIZE);

static struct serial8250_uart_data console_data;

void console_init(void)
{

serial8250_uart_init(&console_data, CONSOLE_UART_BASE,
CONSOLE_UART_CLK_IN_HZ, CONSOLE_BAUDRATE);

register_serial_console(&console_data.chip);
}

platform_config.h

This is a mandatory header file for every platform, since there are several files relaying upon the existence of this
particular file. This file is where you will find the major differences between different platforms, since this is where
you do the memory configuration, define base addresses etc. we are going to list a few here, but it probably makes
more sense to have a look at the already existing platform_config.h files for the other platforms. Our fictive
gendev could look like this:

#ifndef PLATFORM_CONFIG_H
#define PLATFORM_CONFIG_H

/* Make stacks aligned to data cache line length */
(continues on next page)
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(continued from previous page)

#define STACK_ALIGNMENT 64

/* 8250 UART */
#define CONSOLE_UART_BASE 0xcafebabe /* UART0 */
#define CONSOLE_BAUDRATE 115200
#define CONSOLE_UART_CLK_IN_HZ 19200000

/* Optional: when used with CFG_WITH_PAGER, defines the device SRAM */
#define TZSRAM_BASE 0x3F000000
#define TZSRAM_SIZE (200 * 1024)

/* Mandatory main secure RAM usually DDR */
#define TZDRAM_BASE 0x60000000
#define TZDRAM_SIZE (32 * 1024 * 1024)

/* Mandatory TEE RAM location and core load address */
#define TEE_RAM_START TZDRAM_BASE
#define TEE_RAM_PH_SIZE TEE_RAM_VA_SIZE
#define TEE_RAM_VA_SIZE (4 * 1024 * 1024)
#define TEE_LOAD_ADDR (TZDRAM_BASE + 0x20000)

/* Mandatory TA RAM (external less secure RAM) */
#define TA_RAM_START (TZDRAM_BASE + TEE_RAM_VA_SIZE)
#define TA_RAM_SIZE (TZDRAM_SIZE - TEE_RAM_VA_SIZE)

/* Mandatory: for static SHM, need a hardcoded physical address */
#define TEE_SHMEM_START 0x08000000
#define TEE_SHMEM_SIZE (4 * 1024 * 1024)

#endif /* PLATFORM_CONFIG_H */

This is minimal amount of information in the platform_config.h file. I.e, the memory layout for on-chip and
external RAM. Note that parts of the DDR typically will need to be shared with normal world, so there is need for
some kind of memory firewall for this (more about that further down). As you can see we have also added the UART
configuration here, i.e., the DEVICE0_xyz part.

Official board support in OP-TEE?

We do encourage everyone to submit their board support to the OP-TEE project itself, so it becomes part of the official
releases and will be maintained by the OP-TEE community itself. If you intend to do so, then there are a few more
things that you are supposed to do.

Update platforms supported

There is a section at the Platforms supported page that lists all devices officially supported in OP-TEE, that is where
you also shall list your device. It should contain the name of the platform, then composite PLATFORM flag and whether
the device is publicly available or not. If there is a product page on the internet for the device, please also create a link
when writing the device name.

Update .shippable.yml

Since we are using Shippable to test pull requests etc, we would like that you also add your device to the .shippable.yml
file, so that it will at least be built when someone is doing a pull request. Add a line at the end of file:

- _make PLATFORM=<platform-name>_

Maintainer
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If you are submitting the board support upstream and cannot give Linaro maintainers a device, then we are going
to ask you to become the maintainer for the device you have added. This means that you should also update the
MAINTAINERS.md file accordingly. By being a maintainer for a device you are responsible to keep it up to date and
you will be asked every quarter as part of the OP-TEE release schedule to test your device running the latest OP-TEE
software.

Update build.git and manifest.git

This isn’t strictly necessary, but we are trying to create and maintain OP-TEE developer builds that should make it easy
to setup, build and deploy OP-TEE on various devices. We encourage all maintainers to do the same for the boards
they are in charge of. Therefore please consider creating a new manifest (and a new *.mk in build) for the device you
have added to OP-TEE.

2.7.2 Hardware Unique Key

Most devices have some kind of Hardware Unique Key (HUK) that is mainly used to derive other keys. The HUK
could for example be used when deriving keys used in secure storage etc. The important thing with the HUK is that
it needs to be well protected and in the best case the HUK should never ever be readable directly from software, not
even from the secure side. There are different solutions to this, crypto accelerator might have support for it or, it could
involve another secure co-processor.

In OP-TEE the HUK is just stubbed and you will see that in the function called
tee_otp_get_hw_unique_key(...) in core/include/kernel/tee_common_otp.h. In a real secure prod-
uct you must replace this with something else. If your device lacks the hardware support for a HUK, then you must
at least change this to something else than just zeroes. But, remember it is not good secure practice to store a key in
software, especially not the key that is the root for everything else, so this is not something we recommend that you
should do.

2.7.3 Secure Clock

The Time API in GlobalPlatform Internal Core API specification defines three sources of time; system time, TA
persistent time and REE time. The REE time is by nature considered as an unsecure source of time, but the other
two should in a fully trustable hardware make use of trustable source of time, i.e., a secure clock. Note that from
GlobalPlatform point of view it is not required to make use of a secure clock, i.e., it is OK to use time from REE,
but the level of trust should be reflected by the gpd.tee.systemTime.protectionLevel property and the
gpd.tee.TAPersistentTime.protectionLevel property (100=REE controlled clock, 1000=TEE con-
trolled clock). So the functions that one needs to pay attention to are tee_time_get_sys_time(...) and
tee_time_get_ta_time(...). If your hardware has a secure clock, then you probably want to change the
implementation there to instead use the secure clock (and then you would also need to update the property ac-
cordingly, i.e., tee_time_get_sys_time_protection_level() and the variable ta_time_prot_lvl
in tee_svc.c).

2.7.4 Root and Chain of Trust

To be able to assure that your devices are running the (untampered) binaries you intended to run you will need to
establish some kind of trust anchor on the devices.

The most common way of doing that is to put the root public key in some read only memory on the device. Quite often
SoC’s/OEM’s stores public key(s) directly or the hash(es) of the public key(s) in OTP. When the boot ROM (which
indeed needs to be ROM) is about to load the first stage bootloader it typically reads the public key from the software
binary itself, hash the key and compare it to the key in OTP. If they are matching, then the boot ROM can be sure that
the first stage bootloader was indeed signed with the corresponding private key.
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In OP-TEE you will not find any code at all related to this and this is a good example when it is hard for us to do this
in a generic way since device manufacturers all tend to do this in their own unique way and they are not very keen on
sharing their low level boot details and security implementation with the rest of the world. This is especially true on
ARMv7-A. For ARMv8-A it looks bit better, since Arm in Trusted Firmware A have implemented and defined how a
abstract the chain of trust (see auth-framework.rst). We have successfully verified OP-TEE by using the authentication
framework from Trusted Firmware A (see Secure boot for the details).

2.7.5 Hardware Crypto IP

By default OP-TEE uses a software crypto library (currently mbed TLS and LibTomCrypt) and you have the ability to
enable Crypto Extensions that were introduced with ARMv8-A (if the device is capable of that). Some of the devices
we have in our hands do have hardware crypto IP’s, but due to NDA’s etc it has not been possible to enable it. If you
have a device capable of doing crypto operations on a dedicated crypto block and you prefer to use that in favor for the
software implementation, then you will need to implement relevant functions defined in core/include/crypto/crypto.h,
the Crypto API, and write the low level driver that communicates with the device. Our Cryptographic implementation
page describes in detail how the Crypto API is integrated. Since the communication with crypto blocks tends to be
quite different depending on what kind of crypto IP you have, we have not written how that should be done. It might
be that we do that in the future when get hold of a device where we can use the crypto block.

By default OP-TEE is configured with a software PRNG. The entropy is added to software PRNG at various places,
but unfortunately it is still quite easy to predict the data added as entropy. As a consequence, unless the RNG is based
on hardware the generated random will be quite weak.

2.7.6 Power Management / PSCI

In the Add a new platform section where we talked about the file main.c, we added a couple of handlers related to
power management, we are talking about the following lines:

.cpu_on = cpu_on_handler,

.cpu_off = pm_do_nothing,

.cpu_suspend = pm_do_nothing,

.cpu_resume = pm_do_nothing,

.system_off = pm_do_nothing,

.system_reset = pm_do_nothing,

The only function that actually does something there is the cpu_on function, the rest of them are stubbed. The main
reason for that is because we think that how to suspend and resume is a device dependent thing. The code in OP-TEE
is prepared so that callbacks etc from Trusted Firmware A will be routed to OP-TEE, but since the function(s) are just
stubbed we will not do anything and just return. In a real production device, you would probably want to save and
restore CPU states, secure hardware IPs’ registers and TZASC and other memory firewall related setting when these
callbacks are being called.

2.7.7 Memory firewalls / TZASC

Arm have defined a system IP / SoC peripheral called TrustZone Address Space Controller (TZASC, see TZC-380 and
TZC-400). TZASC can be used to configure DDR memory into separate regions in the physcial address space, where
each region can have an individual security level setting. After enabling TZASC, it will perform security checks on
transactions to memory or peripherals. It is not always the case that TZASC is on a device, in some cases the SoC has
developed something equivalent. In OP-TEE this is very well reflected, i.e., different platforms have different ways of
protecting their memory. On ARMv8-A platforms we are in most of the cases using Trusted Firmware A as the boot
firmware and there the secure bootloader is the one that configures secure vs non-secure memory using TZASC (see
plat_arm_security_setup in TF-A). The takeaway here is that you must make sure that you have configured whatever
memory firewall your device has such that it has a secure and a non-secure memory area.
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2.7.8 Trusted Application private/public keypair

By default all Trusted Applications (TA’s) are signed with the pre-generated 2048-bit RSA development key (private
key). This key is located in the keys folder (in the root of optee_os.git) and is named default_ta.pem. This key
must be replaced with your own key and you should never ever check-in this private key in the source code tree when
in use in a real product. The recommended way to store private keys is to use some kind of HSM (Hardware Security
Module), but an alternative would be temporary put the private key on a computer considered as secure when you are
about to sign TA’s intended to be used in real products. Typically it is only a few number of people having access to
this type of key in company. The key handling in OP-TEE is currently a bit limited since we only support a single
key which is used for all TA’s. We have plans on extending this to make it a bit more flexible. Exactly when that will
happen has not been decided yet.

2.8 Secure boot

2.8.1 Armv8-A - Using the authentication framework in TF-A

This section gives a brief description on how to enable the verification of OP-TEE using the authentication framework
in Trusted Firmware A (TF-A), i.e., something that could be used in an Armv8-A environment.

According to user-guide.rst, there is no additional specific build options for the verification of OP-TEE. If we have
enabled the authentication framework and specified the BL32 build option when building TF-A, the BL32 related
certificates will be created automatically by the cert_create tool, and then these certificates will be verified during
booting up.

To enable the authentication framework, the following steps should be followed according to user-guide.rst. For more
details about the authentication framework, please see auth-framework.rst and trusted-board-boot.rst.

• Check out a recent version of the mbed TLS repository and then switch to tag mbedtls-2.2.0

• Besides the normal build options, add the following build options for TF-A

MBEDTLS_DIR=<path of the directory containing mbed TLS sources>
TRUSTED_BOARD_BOOT=1
GENERATE_COT=1
ARM_ROTPK_LOCATION=devel_rsa
ROT_KEY=<TF-A-PATH/plat/arm/board/common/rotpk/arm_rotprivk_rsa.pem>

Above steps have been tested on FVP platform, all verification steps are OK and xtest runs successfully without
regression.

2.8.2 Armv7-A systems

Unlike for Armv8-A systems where one can use a more standardized way of doing secure boot by leverage the authen-
tication framework as described above, most device manufacturers have their own way of doing secure boot. Please
reach out directly to the manufacturer for the device you are working with to be able to understand how to do secure
boot on their devices.
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2.9 Secure storage

2.9.1 Background

Secure Storage in OP-TEE is implemented according to what has been defined in GlobalPlatform’s TEE Internal Core
API (here called Trusted Storage). This specification mandates that it should be possible to store general-purpose data
and key material that guarantees confidentiality and integrity of the data stored and the atomicity of the operations that
modifies the storage (atomicity here means that either the entire operation completes successfully or no write is done).

There are currently two secure storage implementations in OP-TEE:

• The first one relies on the normal world (REE) file system. It is described in this document and is the default
implementation. It is enabled at compile time by CFG_REE_FS=y.

• The second one makes use of the Replay Protected Memory Block (RPMB) partition of an eMMC device, and
is enabled by setting CFG_RPMB_FS=y. It is described in RPMB Secure Storage.

It is possible to use the normal world file systems and the RPMB implementations simultaneously. For
this, two OP-TEE specific storage identifiers have been defined: TEE_STORAGE_PRIVATE_REE and
TEE_STORAGE_PRIVATE_RPMB. Depending on the compile-time configuration, one or several values may be used.
The value TEE_STORAGE_PRIVATE selects the REE FS when available, otherwise the RPMB FS (in this order).

2.9.2 REE FS Secure Storage

Fig. 6: Secure Storage System Architecture

Source Files in OP-TEE OS
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Table 12: Secure storage files
Source file Purpose
core/tee/tee_svc_storage.cTEE trusted storage service calls
core/tee/tee_ree_fs.cTEE file system & REE file operation interface
core/tee/fs_htree.cHash tree
core/tee/tee_fs_key_manager.cKey manager
lib/libutee/ GlobalPlatform Internal API library

Basic File Operation Flow

When a TA is calling the write function provided by GP Trusted Storage API to write data to a persistent object, a
corresponding syscall implemented in TEE Trusted Storage Service will be called, which in turn will invoke a series of
TEE file operations to store the data. TEE file system will then encrypt the data and send REE file operation commands
and the encrypted data to TEE supplicant by a series of RPC messages. TEE supplicant will receive the messages and
store the encrypted data accordingly to the Linux file system. Reading files are handled in a similar manner.

GlobalPlatform Trusted Storage Requirement

Below is an excerpt from the specification, listing the most vital requirements:

1. The Trusted Storage may be backed by non-secure resources as long as
suitable cryptographic protection is applied, which MUST be as strong as
the means used to protect the TEE code and data itself.

2. The Trusted Storage MUST be bound to a particular device, which means
that it MUST be accessible or modifiable only by authorized TAs
running in the same TEE and on the same device as when the data was
created.

3. Ability to hide sensitive key material from the TA itself.

4. Each TA has access to its own storage space that is shared among all the
instances of that TA but separated from the other TAs.

5. The Trusted Storage must provide a minimum level of protection against
rollback attacks. It is accepted that the actually physical storage
may be in an insecure area and so is vulnerable to actions from
outside of the TEE. Typically, an implementation may rely on the REE
for that purpose (protection level 100) or on hardware assets
controlled by the TEE (protection level 1000).

(see GP TEE Internal Core API section 2.5 and 5.2)

If configured with CFG_RPMB_FS=y the protection against rollback is controlled by the TEE and is set to 1000. If
CFG_RPMB_FS=n, there’s no protection against rollback, and the protection level is set to 0.

TEE File Structure in Linux File System

OP-TEE by default uses /data/tee/ as the secure storage space in the Linux file system. Each persistent object
is assigned an internal identifier. It is an integer which is visible in the Linux file system as /data/tee/<file
number>.
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A directory file, /data/tee/dirf.db, lists all the objects that are in the secure storage. All normal world files are
integrity protected and encrypted, as described below.

2.9.3 Key Manager

Key manager is an component in TEE file system, and is responsible for handling data encryption and decryption and
also management of the sensitive key materials. There are three types of keys used by the key manager: the Secure
Storage Key (SSK), the TA Storage Key (TSK) and the File Encryption Key (FEK).

Secure Storage Key (SSK)

SSK is a per-device key and is generated and stored in secure memory when OP-TEE is booting. SSK is used to derive
the TA Storage Key (TSK).

SSK is derived by

SSK = HMACSHA256 (HUK, Chip ID || “static string”)

The functions to get Hardware Unique Key (HUK) and chip ID depends on the platform implementation. Currently,
in OP-TEE OS we only have a per-device key, SSK, which is used for secure storage subsystem, but, for the future
we might need to create different per-device keys for different subsystems using the same algorithm as we generate
the SSK; An easy way to generate different per-device keys for different subsystems is using different static strings to
generate the keys.

Trusted Application Storage Key (TSK)

The TSK is a per-Trusted Application key, which is generated from the SSK and the TA’s identifier (UUID). It is used
to protect the FEK, in other words, to encrypt/decrypt the FEK.

TSK is derived by:

TSK = HMACSHA256 (SSK, TA_UUID)

File Encryption Key (FEK)

When a new TEE file is created, key manager will generate a new FEK by PRNG (pesudo random number genera-
tor) for the TEE file and store the encrypted FEK in meta file. FEK is used for encrypting/decrypting the TEE file
information stored in meta file or the data stored in block file.

2.9.4 Hash Tree

The hash tree is responsible for handling data encryption and decryption of a secure storage file. The hash tree
is implemented as a binary tree where each node (struct tee_fs_htree_node_image below) in the tree
protects its two child nodes and a data block. The meta data is stored in a header (struct tee_fs_htree_image
below) which also protects the top node.

All fields (header, nodes, and blocks) are duplicated with two versions, 0 and 1, to ensure atomic updates. See
core/tee/fs_htree.c for details.
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Fig. 7: Meta data encryption

Meta Data Encryption Flow

A new meta IV will be generated by PRNG when a meta data needs to be updated. The size of meta IV is defined
in core/include/tee/fs_htree.h, likewise are the data structures of meta data and node data are defined in fs_htree.h as
follows:

struct tee_fs_htree_node_image {
uint8_t hash[TEE_FS_HTREE_HASH_SIZE];
uint8_t iv[TEE_FS_HTREE_IV_SIZE];
uint8_t tag[TEE_FS_HTREE_TAG_SIZE];
uint16_t flags;

};

struct tee_fs_htree_meta {
uint64_t length;

};

struct tee_fs_htree_imeta {
struct tee_fs_htree_meta meta;
uint32_t max_node_id;

};

struct tee_fs_htree_image {
uint8_t iv[TEE_FS_HTREE_IV_SIZE];
uint8_t tag[TEE_FS_HTREE_TAG_SIZE];
uint8_t enc_fek[TEE_FS_HTREE_FEK_SIZE];
uint8_t imeta[sizeof(struct tee_fs_htree_imeta)];
uint32_t counter;

};
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Block Data Encryption Flow

Fig. 8: Block data encryption

A new block IV will be generated by PRNG when a block data needs to be updated. The size of block IV is defined in
core/include/tee/fs_htree.h.

2.9.5 Atomic Operation

According to GlobalPlatform Trusted Storage requirement of the atomicity, the following operations should support
atomic update:

Write, Truncate, Rename, Create and Delete

The strategy used in OP-TEE secure storage to guarantee the atomicity is out-of-place update.

2.9.6 RPMB Secure Storage

This document describes the RPMB secure storage implementation in OP-TEE, which is enabled by setting
CFG_RPMB_FS=y. Trusted Applications may use this implementation by passing a storage ID equal to
TEE_STORAGE_PRIVATE_RPMB, or TEE_STORAGE_PRIVATE if CFG_REE_FS is disabled. For details about
RPMB, please refer to the JEDEC eMMC specification (JESD84-B51).

The architecture is depicted below.
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| NORMAL WORLD : SECURE WORLD |
:

U tee-supplicant : Trusted application
S (rpmb.c) : (secure storage API)
E ^ ^ : ^
R | | : |
~~~~~~~ ioctl ~~~~~~~|~~~~~~~~~~~~:~~~~~~~~~~~~~~~~~~|~~~~~~~~~~~~~~~~~~~~
K | | : OP-TEE
E v v : (tee_svc_storage.c)
R MMC/SD subsys. OP-TEE driver : (tee_rpmb_fs.c, tee_fs_key_manager.c)
N ^ ^ : ^
E | | : |
L v | : |

Controller driver | : |
~~~~~~~~~~~~~~~~~~~~~~~~~~~~|~~~~~~~~~~~~~~~~~~~~~~~~|~~~~~~~~~~~~~~~~~~~~

v v
Secure monitor / EL3 firmware

For information about the ioctl() interface to the MMC/SD subsystem in the Linux kernel, see the Linux core
MMC header file linux/mmc/core.h and the mmc-utils repository.

The Secure Storage API

This part is common with the REE-based filesystem. The interface between the system calls in
core/tee/tee_svc_storage.c and the RPMB filesystem is the tee_file_operations, namely struct tee_file_ops.

The RPMB filesystem

The FS implementation is entirely in core/tee/tee_rpmb_fs.c and the RPMB partition is divided in three parts:

• The first 128 bytes are reserved for partition data (struct rpmb_fs_partition).

• At offset 512 is the File Allocation Table (FAT). It is an array of struct rpmb_fat_entry elements, one
per file. The FAT grows dynamically as files are added to the filesystem. Among other things, each entry has
the start address for the file data, its size, and the filename.

• Starting from the end of the RPMB partition and extending downwards is the file data area.

Space in the partition is allocated by the general-purpose allocator functions, tee_mm_alloc(...) and
tee_mm_alloc2(...).

All file operations are atomic. This is achieved thanks to the following properties:

• Writing one single block of data to the RPMB partition is guaranteed to be atomic by the eMMC specification.

• The FAT block for the modified file is always updated last, after data have been written successfully.

• Updates to file content is done in-place only if the data do not span more than the “reliable write block count”
blocks. Otherwise, or if the file needs to be extended, a new file is created.

Device access

There is no eMMC controller driver in OP-TEE. The device operations all have to go through the normal world. They
are handled by the tee-supplicant process which further relies on the kernel’s ioctl() interface to access the
device. tee-supplicant also has an emulation mode which implements a virtual RPMB device for test purposes.

RPMB operations are the following:
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• Reading device information (partition size, reliable write block count).

• Programming the security key. This key is used for authentication purposes. Note that it is different
from the Secure Storage Key (SSK) defined below, which is used for encryption. Like the SSK how-
ever, the security key is also derived from a hardware unique key or identifier. Currently, the function
tee_otp_get_hw_unique_key() is used to generate the RPMB security key.

• Reading the write counter value. The write counter is used in the HMAC computation during read and
write requests. The value is read at initialization time, and stored in struct tee_rpmb_ctx, i.e.,
rpmb_ctx->wr_cnt.

• Reading or writing blocks of data.

RPMB operations are initiated on request from the FS layer. Memory buffers for requests and responses are allocated
in shared memory using thread_rpc_alloc_payload(...). Buffers are passed to the normal world in a
TEE_RPC_RPMB_CMD message, thanks to the thread_rpc_cmd() function. Most RPMB requests and responses
use the data frame format defined by the JEDEC eMMC specification. HMAC authentication is implemented here also.

Encryption

The FS encryption routines are in core/tee/tee_fs_key_manager.c. Block encryption protects file data. The algorithm
is 128-bit AES in Cipher Block Chaining (CBC) mode with Encrypted Salt-Sector Initialization Vector (ESSIV), see
CBC-ESSIV for details.

• During OP-TEE initialization, a 128-bit AES Secure Storage Key (SSK) is derived from a Hardware
Unique Key (HUK). It is kept in secure memory and never written to disk. A Trusted Application
Storage Key is derived from the SSK and the TA UUID.

• For each file, a 128-bit encrypted File Encryption Key (FEK) is randomly generated when the file is
created, encrypted with the TSK and stored in the FAT entry for the file.

• Each 256-byte block of data is then encrypted in CBC mode. The initialization vector is obtained by
the ESSIV algorithm, that is, by encrypting the block number with a hash of the FEK. This allows
direct access to any block in the file, as follows:

FEK = AES-Decrypt(TSK, encrypted FEK);
k = SHA256(FEK);
IV = AES-Encrypt(128 bits of k, block index padded to 16 bytes)
Encrypted block = AES-CBC-Encrypt(FEK, IV, block data);
Decrypted block = AES-CBC-Decrypt(FEK, IV, encrypted block data);

SSK, TSK and FEK handling is common with the REE-based secure storage, while the AES CBC block encryption is
used only for RPMB (the REE implementation uses GCM). The FAT is not encrypted.

REE FS hash state

If configured with both CFG_REE_FS=y and CFG_RPMB_FS=y the REE FS will create a special file, dirfile.
db.hash in RPMB which hold a hash representing the state of REE FS.

2.9.7 Important caveats

Warning: Currently no OP-TEE platform is able to support retrieval of the Hardware Unique Key or Chip
ID required for secure operation. For all platforms, a constant key is used, resulting in no protection against
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decryption, or Secure Storage duplication to other devices. This is because information about how to retrieve key
data from the SoC is considered sensitive by the vendors and it is not publicly available.

In OP-TEE, there are APIs for reading keys generically from One-Time-Programmable (OTP) memory. But there
are no existing platform implementations.

To allow Secure Storage to operate securely on your platform, you must define implementations in your platform code
for:

void tee_otp_get_hw_unique_key(struct tee_hw_unique_key *hwkey);

int tee_otp_get_die_id(uint8_t *buffer, size_t len);

These implementations should fetch the key data from your SoC-specific e-fuses, or crypto unit according to the
method defined by your SoC vendor.

2.9.8 References

For more information about secure storage, please see SFO15-503, LAS16-504, SFO17-309 at Presentations and the
TEE Internal Core API specification.

2.10 Trusted Applications

There are two ways to implement Trusted Applications (TAs), Pseudo TAs and user mode TAs. User mode TAs are
full featured Trusted Applications as specified by the GlobalPlatform API TEE specifications, these are simply the
ones people are referring to when they are saying “Trusted Applications” and in most cases this is the preferred type
of TA to write and use.

2.10.1 Pseudo Trusted Applications

These are implemented directly to the OP-TEE core tree in, e.g., core/pta and are built along with and statically
built into the OP-TEE core blob.

The Pseudo Trusted Applications included in OP-TEE already are OP-TEE secure privileged level services hidden
behind a “GlobalPlatform TA Client” API. These Pseudo TAs are used for various purposes such as specific secure
services or embedded tests services.

Pseudo TAs do not benefit from the GlobalPlatform Core Internal API support specified by the GlobalPlatform TEE
specs. These APIs are provided to TAs as a static library each TA shall link against (the “libutee”) and that calls
OP-TEE core service through system calls. As OP-TEE core does not link with libutee, Pseudo TAs can only use the
OP-TEE core internal APIs and routines.

As Pseudo TAs runs at the same privileged execution level as the OP-TEE core code itself and that might or might not
be desirable depending on the use case.

In most cases an unprivileged (user mode) TA is the best choice instead of adding your code directly to the OP-
TEE core. However if you decide your application is best handled directly in OP-TEE core like this, you can look at
core/pta/stats.c as a template and just add your Pseudo TA based on that to the sub.mk in the same directory.
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2.10.2 User Mode Trusted Applications

User Mode Trusted Applications are loaded (mapped into memory) by OP-TEE core in the Secure World when some-
thing in Rich Execution Environment (REE) wants to talk to that particular application UUID. They run at a lower
CPU privilege level than OP-TEE core code. In that respect, they are quite similar to regular applications running in
the REE, except that they execute in Secure World.

Trusted Application benefit from the GlobalPlatform TEE Internal Core API as specified by the GlobalPlatform TEE
specifications. There are several types of user mode TAs, which differ by the way they are stored.

2.10.3 TA locations

Plain TAs (user mode) can reside and be loaded from various places. There are three ways currently supported in
OP-TEE.

Early TA

The so-called early TAs are virtually identical to the REE FS TAs, but instead of being loaded from the Normal World
file system, they are linked into a special data section in the TEE core blob. Therefore, they are available even before
tee-supplicant and the REE’s filesystems have come up. Please find more details in the early TA commit.

REE filesystem TA

They consist of a cleartext signed ELF file, named from the UUID of the TA and the suffix .ta. They are built
separately from the OP-TEE core boot-time blob, although when they are built they use the same build system, and
are signed with the key from the build of the original OP-TEE core blob.

Because the TAs are signed, they are able to be stored in the untrusted REE filesystem, and tee-supplicant will
take care of passing them to be checked and loaded by the Secure World OP-TEE core. Note that this type of TA isn’t
encrypted.

Secure Storage TA

These are stored in secure storage. The meta data is stored in a database of all installed TAs and the actual binary is
stored encrypted and integrity protected as a separate file in the untrusted REE filesystem (flash). Before these TAs
can be loaded they have to be installed first, this is something that can be done during initial deployment or at a later
stage.

For test purposes the test program xtest can install a TA into secure storage with the command:

$ xtest --install-ta

2.10.4 TA Properties

This section give a more in depth description of the TA properties (see Trusted Applications also).

GlobalPlatform Properties

Standard TA properties must be defined through property flag in macro TA_FLAGS in
user_ta_header_defines.h
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Single Instance

"gpd.ta.singleInstance" is a boolean property of the TA. This property defines if one instance of the TA must
be created and will receive all open session request, or if a new specific TA instance must be created for each incoming
open session request. OP-TEE TA flag TA_FLAG_SINGLE_INSTANCE sets to configuration of this property. The
boolean property is set to true if TA_FLAGS sets bit TA_FLAG_SINGLE_INSTANCE, otherwise the boolean
property is set to false.

Multi-session

"gpd.ta.multiSession" is a boolean property of the TA. This property defines if the TA instance can handle
several sessions. If disabled, TA instance support only one session. In such case, if the TA already has a opened
session, any open session request will return with a busy error status.

Note: This property is meaningless if TA is NOT SingleInstance TA.

OP-TEE TA flag TA_FLAG_MULTI_SESSION sets to configuration of this property. The boolean property is set to
true if TA_FLAGS sets bit TA_FLAG_MULTI_SESSION, otherwise the boolean property is set to false.

Keep Alive

"gpd.ta.instanceKeepAlive" is a boolean property of the TA. This property defines if the TA instance created
must be destroyed or not when all sessions opened towards the TA are closed. If the property is enabled, TA instance,
once created (at 1st open session request), is never removed unless the TEE itself is restarted (boot/reboot).

Note: This property is meaningless if TA is NOT SingleInstance TA.

OP-TEE TA flag TA_FLAG_INSTANCE_KEEP_ALIVE sets to configuration of this property. The boolean property
is set to true if TA_FLAGS sets bit TA_FLAG_INSTANCE_KEEP_ALIVE, otherwise the boolean property is set
to false.

Heap Size

"gpd.ta.dataSize" is a 32bit integer property of the TA. This property defines the size in bytes of the TA
allocation pool, in which TEE_Malloc() and friends allocate memory. The value of the property must be defined
by the macro TA_DATA_SIZE in user_ta_header_defines.h (see TA Properties).

Stack Size

"gpd.ta.stackSize" is a 32bit integer property of the TA. This property defines the size in bytes of the
stack used for TA execution. The value of the property must be defined by the macro TA_STACK_SIZE in
user_ta_header_defines.h (see TA Properties).

Property Extensions
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Secure Data Path Flag

TA_FLAG_SECURE_DATA_PATH is a bit flag supported by TA_FLAGS. This property flag claims the secure data
support from the OP-TEE OS for the TA. Refer to the OP-TEE OS for secure data path support. TAs that do not set
TA_FLAG_SECURE_DATA_PATH in the value of TA_FLAGS will not be able to handle memory reference invoca-
tion parameters that relate to secure data path buffers.

Cache maintenance Flag

TA_FLAG_CACHE_MAINTENANCE is a bit flag supported by TA_FLAGS. This property flag, when enabled, allows
Trusted Applciation to use the cache maintenance API extension of the Internal Core API described in Cache Mainte-
nance Support. TAs that do not set TA_FLAG_CACHE_MAINTENANCE in the value of their TA_FLAGS will not be
able to call the cache maintenance API.

Deprecated Property Flags

Older versions of OP-TEE used to define extended property flags that are deprecated and meaningless to current
OP-TEE. These are TA_FLAG_USER_MODE, TA_FLAG_EXEC_DDR and TA_FLAG_REMAP_SUPPORT.

2.11 Virtualization

OP-TEE have experimental virtualization support. This is when one OP-TEE instance can run TAs from multiple
virtual machines. OP-TEE isolates all VM-related states, so one VM can’t affect another in any way.

With virtualization support enabled, OP-TEE will rely on a hypervisor, because only the hypervisor knows which
VM is calling OP-TEE. Also, naturally the hypervisor should inform OP-TEE about creation and destruction of VMs.
Besides, in almost all cases, hypervisor enables two-stage MMU translation, so VMs does not see real physical address
of memory, instead they work with intermediate physical addresses (IPAs). On other hand OP-TEE can’t translate IPA
to PA, so this is a hypervisor’s responsibility to do this kind of translation. So, hypervisor should include a component
that knows about OP-TEE protocol internals and can do this translation. We call this component “TEE mediator” and
right now only XEN hypervisor have OP-TEE mediator.

2.11.1 Configuration

Virtualization support is enabled with CFG_VIRTUALIZATION configuration option. When this option is en-
abled, OP-TEE will not work without compatible a hypervisor. This is because the hypervisor should send
OPTEE_SMC_VM_CREATED SMC with VM ID before any standard SMC can be received from client.

CFG_VIRT_GUEST_COUNT controls the maximum number of supported VMs. As OP-TEE have limited size of
available memory, increasing this count will decrease amount of memory available to one VM. Because we want VMs
to be independent, OP-TEE splits available memory in equal portions to every VM, so one VM can’t consume all
memory and cause DoS to other VMs.

2.11.2 Requirements for hypervisor

As said earlier, hypervisor should be aware of OP-TEE and SMCs from virtual guests to OP-TEE. This is a list of
things, that compatible hypervisor should perform:
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1. When new OP-TEE-capable VM is created, hypervisor should inform OP-TEE about it with SMC
OPTEE_SMC_VM_CREATED. a1 parameter should contain VM id. ID 0 is defined as HYP_CLNT_ID and
is reserved for hypervisor itself.

2. When OP-TEE-capable VM is being destroyed, hypervisor should stop all VCPUs (this will ensure that OP-TEE
have no active threads for that VMs) and send SMC OPTEE_SMC_VM_DESTROYED with the same parameters
as for OPTEE_SMC_VM_CREATED.

3. Any SMC to OP-TEE should have VM ID in a7 parameter. This is either HYP_CLNT_ID if call originates
from hypervisor or VM ID that was passed in OPTEE_SMC_VM_CREATED call.

4. Hypervisor should perform IPA<->PA address translation for all SMCs. This includes both arguments in a1-a6
registers and in in-memory command buffers.

5. Hypervisor should pin memory pages that VM shares with OP-TEE. This means, that hypervisor should ensure
that pinned page will reside at the original PA as long, as it is shared with OP-TEE. Also it should still belong to
the VM that shared it. For example, the hypervisor should not swap out this page, transfer ownership to another
VM, unmap it from VM address space and so on.

6. Naturally, the hypervisor should correctly handle the OP-TEE protocol, so for any VM it should look like it is
working with OP-TEE directly.

2.11.3 Limitations

Virtualization support is in experimental state and it have some limitations, user should be aware of.

Platforms support

Only Armv8 architecture is supported. There is no hard restriction, but currently Armv7-specific code (like MMU or
thread manipulation) just know nothing about virtualization. Only one platform has been tested right now and that is
QEMU-V8 (aka qemu that emulates Arm Versatile Express with Armv8 architecture). Support for Rcar Gen3 should
be added soon.

Static VMs guest count and memory allocation

Currently, a user should configure maximum number of guests. OP-TEE will split memory into equal chunks,
so every VM will have the same amount of memory. For example, if you have 6MB for your TAs, you can set
CFG_VIRT_GUEST_COUNT to 3 and every VM would be able to use 2MB maximum, even if there is no other VMs
running. This is okay for embedded setups when you know exact number and roles of VMs, but can be inconvenient
for server applications. Also, it is impossible to configure amount of memory available for a given VM. Every VM
instance will have exactly the same amount of memory.

Sharing hardware resources and PTAs

Right now only HW that can be used by multiple VMs simultaneously is serial console, used for logging. Devices like
HW crypto accelerators, secure storage devices (e.g. external flash storage, accessed directly from OP-TEE) and others
are not supported right now. Drivers should be made virtualization-aware before they can be used with virtualization
extensions.

Every VM will have own PTA states, which is a good thing in most cases. But if one wants PTA to have some global
state that is shared between VMs, he need to write PTA accordingly.
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No compatibility with “normal” mode

OP-TEE built with CFG_VIRTUALIZATION=y will not work without a hypervisor, because before executing any
standard SMC, OPTEE_SMC_VM_CREATED must be called. This can be inconvenient if one wants to switch between
virtualized and non-virtualized environment frequently. On other hand, it is not a big deal in a production environment.
Simple workaround can be made for this: if OP-TEE receives standard SMC prior to OPTEE_SMC_VM_CREATED, it
implicitly creates VM context and uses it for all subsequent calls.

Implementation details

OP-TEE as a whole can be split into two entities. Let us call them “nexus” and TEE. Nexus is a core part of OP-TEE
that takes care of low level things: SMC handling, memory management, threads creation and so on. TEE is a part that
does the actual job: handles requests, loads TAs, executes them, and so on. So, it is natural to have one nexus instance
and multiple instances of TEE, one TEE instance per registered VM. This can be done either explicitly or implicitly.

Explicit way is to move TEE state in some sort of structure and make all code to access fields of this structure.
Something like struct task_struct and current in linux kernel. Then it is easy to allocate such structure for
every VM instance. But this approach basically requires to rewrite all OP-TEE code.

Implicit way is to have banked memory sections for TEE/VM instances. So memory layout can look something like
that:

+-------------------------------------------------+
| Nexus: .nex_bss, .nex_data, ... |
+-------------------------------------------------+
| TEE states |
| |
| VM1 TEE state | VM 2 TEE state | VM 3 TEE state |
| .bss, .data | .bss, .data | .bss, .data, |
+-------------------------------------------------+

This approach requires no changes in TEE code and requires some changes into nexus code. So, idea that Nexus
state resides in separate sections (.nex_data, .nex_bss, .nex_nozi, .nex_heap and others) and is always
mapped.

TEE state resides in standard sections (like .data, .bss, .heap and so on). There is a separate set of this sections
for every VM registered and Nexus maps them only when it receives call from corresponding VM.

As Nexus and TEE have separate heaps, bget allocator was extended to work with multiple “contexts”. malloc(),
free() with friends work with one context. nex_malloc() (and other nex_ functions) were added. They use
different context, so now Nexus can use separate heap, which is always mapped into OP-TEE address space. When
virtualization support is disabled, all those nex_ functions are defined to point to standard malloc() counterparts.

To change memory mappings in run-time, in MMU code we have added a new entity, named “partition”, which is
defined by struct mmu_partition. It holds information about all page-tables, so the whole MMU mapping can
be switched by one write to TTBR register.

There is the default partition, it holds MMU state when there is no VM context active, so no TEE state is mapped.
When OP-TEE receives OPTEE_SMC_VM_CREATED call, it copies default partition into new one and then maps
sections with TEE data. This is done by prepare_memory_map() function in virtualization.c.

When OP-TEE receives STD call it checks that the supplied VM ID is valid and then activates corresponding MMU
partition, so TEE code can access its own data. This is basically how virtualization support is working.
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Build and run

In this part of the documentation you will find information telling you how to build OP-TEE as a whole developer
setup or as individual components. Likewise it will also tell you how to run OP-TEE on various devices.

Since you pressed this, it’s likely that you want to know how to build a full OP-TEE developer setup. So a first place
to start looking is probably at the “build” page to get started.

3.1 AOSP

This page contains information that tells how to get OP-TEE up and running on HiKey devices (see HiKey 620, HiKey
960) together with AOSP. The build is based on the latest OP-TEE release and updated every quarter together with the
regular OP-TEE releases.

Note: We only use and support this static/stable configuration. If you try using it with latest available AOSP, there is
a risk that both OP-TEE and other parts are not working as expected.

3.1.1 Prerequisites

• You should already be able to build AOSP for Hikey according to the official instructions. Note that the official
build is NOT part of the OP-TEE build. It is a separate and non-related build used only to verify and make sure
that your system has everything needed to build AOSP without any issues.

• Distro should have necessary packages installed, and the repo tool should be installed. Note that AOSP is built
with Java. Also make sure that the mtools package is installed, which is needed to make the hikey boot image.

• In addition, you will need the pre-requisites necessary to build optee-os.

After following the AOSP setup instructions, the following additional packages from main Prerequisites page are
needed. Please install them.
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3.1.2 Build instructions

$ git clone https://github.com/linaro-swg/optee_android_manifest [-b <release_tag>]
$ cd optee_android_manifest

HiKey620 - LeMaker 8GB

$ ./sync-p.sh
$ ./build-p.sh

HiKey620 - CircuitCo 4GB

$ ./sync-p.sh
$ ./build-p.sh -4g

HiKey960

$ ./sync-p-hikey960.sh
$ ./build-p-hikey960.sh

These steps should (must) finish with no errors. In case there are errors, then there is no need trying to flash the device.

Warning:

• --force-sync is used which means you might lose your work so save often, save frequent, and save
accordingly, especially before running sync-p.sh again!

• Attention! Do NOT use git clean with -x or -X or -e option in optee_android_manifest/,
else risk losing all files in the directory!!!

Hint: You can add the -squashfs option to build.sh option to make system.img size smaller, but this will
make /system read-only, so you won’t be able to push files to it.

For older releases (other versions of relatively stable builds), use below instead of ./sync-p.sh.

$ ./wrappers/sync.sh -v p -t <hikey|hikey960> \
-bm <name of a pinned manifest file in archive/> \
2>&1 |tee logs/sync-p.log

E.g.

$ ./wrappers/sync.sh -v p -t hikey \
-bm pinned-manifest-stable_yvr18.xml \
2>&1 |tee logs/sync-p.log

Other existing files are for internal development purposes ONLY and NOT SUPPORTED!

3.1.3 Flashing the image

The instructions for flashing the image can be found in detail under device/linaro/hikey/installer/
hikey{960}/README in the tree.

1. Set jumpers/switches 1-2 and 3-4, and unset 5-6.
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2. Reset the board. After that, invoke:

HiKey620

$ cp -a out/target/product/hikey/*.img device/linaro/hikey/installer/hikey/
$ sudo ./device/linaro/hikey/installer/hikey/flash-all.sh /dev/ttyUSBn

HiKey960

$ cp -a out/target/product/hikey960/*.img device/linaro/hikey/installer/hikey960/
$ sudo ./device/linaro/hikey/installer/hikey960/flash-all.sh /dev/ttyUSBn

where the /dev/ttyUSBn device is the one that appears after rebooting with the 3-4 jumper set. Note that the device
only remains in this recovery mode for about 90 seconds. If you take too long to run the flash commands, it will need
to be reset again. After flashing, unset the 3-4 jumper again to boot normally.

3.1.4 Partial flashing

The last handful of lines in the flash-all.sh script flash various images. After modifying and rebuilding Android,
it is only necessary to flash boot, system, cache, vendor and userdata. If you aren’t modifying the kernel, boot is not
necessary, either.

3.1.5 Experimental prebuilts

Available at http://snapshots.linaro.org/android under android-hikey* directories.

3.1.6 Running xtest

Do NOT try to run tee-supplicant as it has already been started automatically as a service! Once booted to the
command prompt, xtest can be run immediately from the console or an adb shell. For more details about running
OP-TEE, please see Run xtest at optee_test.

3.1.7 Running VTS Gtest unit for Gatekeeper and Keymaster (Optional)

On the device after going into the command prompt, run:

$ su
$ ./data/nativetest64/VtsHalGatekeeperV1_0TargetTest/VtsHalGatekeeperV1_0TargetTest
$ ./data/nativetest64/VtsHalKeymasterV3_0TargetTest/VtsHalKeymasterV3_0TargetTest

Note: These tests need to be run as root.

3.1.8 Enable adb over USB

Boot the device. On serial console:

$ su setprop sys.usb.configfs 1
$ stop adbd
$ start adbd
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3.1.9 Known issues

• If you don’t have a monitor or hdmi emulator (dummy plug) connected to the board, you’ll see constant er-
rors scrolling on the console. As a workaround, move android.hardware.graphics.composer@2.
1-service.rc out of /vendor/etc/init. Move it back in when working with a monitor again.

• Adb over USB currently doesn’t work on HiKey960. As a workaround, use adb over tcpip. See https://bugs.
96boards.org/show_bug.cgi?id=502 for details on how to connect. There are still some limitations however. E.g.
running adb shell or a second adb instance will break the current adb tcpip connection. This might be due
to unstable WiFi (there are periodic error messages like wlcore: WARNING corrupted packet in
RX: status: 0x1 len: 76) or just incompleteness of the generic HiKey960 builds under P.

3.2 Device specific information

3.2.1 DeveloperBox

The instructions here will tell how to build OP-TEE for DeveloperBox.

Build instructions

1. Follow the “Get and build the solution” in build from step 1 to step 3.

2. Initialize EDK2 submodule

1 $ cd <optee-project>/edk2
2 $ git submodule update --init

3. Follow “Get and build the solution” step 4 & 5

4. Stage a new OP-TEE update capsule. This updates TF-A, OP-TEE and UEFI.

1 $ fwupdate --apply {50b94ce5-8b63-4849-8af4-ea479356f0e3} \
2 > <optee-project>/edk2-platforms/Build/DeveloperBox/RELEASE_GCC5/FV/\
3 > SYNQUACERFIRMWAREUPDATECAPSULEFMPPKCS7.Cap

Hint: Change RELEASE_GCC5 to DEBUG_GCC5 for debug build.

5. Reboot to update.

6. Follow the rest of”Get and build the solution” from step 7

3.2.2 FVP

The instructions here will tell how to build and run OP-TEE using Foundation Models.

Build instructions

Start out by following the “Get and build the solution” as described in build. However, stop before doing “Step 5 -
Build the solution”.

Next you should obtain the Armv8-A Foundation Platform (For Linux Hosts Only). To download FVPs you’ll
need to log in to Arm Self Service. That binary should be untar’ed to the root of the repo forest, i.e., like this:
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<fpv-project>/Foundation_Platformpkg. In the end after cloning all source code, getting the toolchains
and “installing” Foundation_Platformpkg you should have a folder structure that looks like this:

$ ls -al
drwxrwxr-x 15 jbech jbech 4096 Feb 5 09:10 .
drwxr-xr-x 22 jbech jbech 4096 Jan 15 12:45 ..
drwxrwxr-x 18 jbech jbech 4096 Feb 5 09:10 arm-trusted-firmware
drwxrwxr-x 9 jbech jbech 4096 Feb 5 09:10 build
drwxrwxr-x 15 jbech jbech 4096 Feb 5 09:10 buildroot
drwxrwxr-x 51 jbech jbech 4096 Feb 5 09:10 edk2
drwxrwxr-x 5 jbech jbech 4096 Feb 5 09:10 edk2-platforms
drwxrwxr-x 6 jbech jbech 4096 Mar 15 2018 Foundation_Platformpkg
drwxrwxr-x 15 jbech jbech 4096 Feb 5 09:10 grub
drwxrwxr-x 26 jbech jbech 4096 Feb 5 09:10 linux
drwxrwxr-x 6 jbech jbech 4096 Feb 5 09:10 optee_client
drwxrwxr-x 10 jbech jbech 4096 Feb 5 09:10 optee_examples
drwxrwxr-x 11 jbech jbech 4096 Feb 5 09:10 optee_os
drwxrwxr-x 8 jbech jbech 4096 Feb 5 09:10 optee_test
drwxrwxr-x 7 jbech jbech 4096 Feb 5 09:10 .repo
lrwxrwxrwx 1 jbech jbech 23 Feb 5 09:09 toolchains

When this pre-condition met you can simply continue with

$ make run

and then FVP should build the rootfs and then start the simulation and when you have a terminal you can log in and
run xtest (as described at Step 9 - Run xtest).

3.2.3 HiKey 620

The instructions here will tell how to run OP-TEE on HiKey 620.

Multiple sources for HiKey and OP-TEE instructions?

First you must understand that the HiKey project as such is led by the 96Boards project. So, if you aren’t interested
in running OP-TEE on the device, then you should stop reading here and instead have a look at the official HiKey
documentation.

For OP-TEE using HiKey you will still find information in more than one place. There are a couple of reasons for that.

• 96Boards: The official 96Boards project used to host some OP-TEE instructions and they include OP-TEE in
their official releases.

• Google: has an AOSP HiKey branch, where OP-TEE is supported to some extent.

• Linaro-SWG: The OP-TEE team has done some work related to AOSP (see the AOSP page) and there HiKey
has been one of the devices in use.

If you have questions regarding the configurations above, please reach out to the people on the right forum (96Boards,
Google and Linaro-SWG).

This particular guide is maintained by the OP-TEE core team and this is what we use when we are doing are stable
releases for our OP-TEE developer builds. I.e, for OP-TEE this should be considered as a well maintained guide with
a fully working setup.
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Supported HiKey boards

There are four different versions of the HiKey board.

Name Manufacturer Memory Flash Comment
HiKey CircuitCo 1GB 4GB Green solder mask
HiKey LeMaker 1GB 8GB Black solder mask
HiKey LeMaker 2GB 8GB Black solder mask

All of them works, but where differences apply we have default configurations that works for the LeMaker 8GB
eMMC versions.

UART adapter board

Everything is configured to use the 96Boards UART Adapter Board. The UART is by default configured to UART3.
If you don’t have any UART adapter board and instead would like to use UART0, then you need to change that before
building. See CFG_NW_CONSOLE_UART and CFG_NW_CONSOLE_UART in hikey.mk.

Build instructions

Just follow the “Get and build the solution” as described in build. The make flash step will tell you how you
should set the jumpers on the board.

Recovery

If you manage to corrupt the device, so that fastboot doesn’t load automatically on boot, then you will need to run the
recovery procedure. Basically what you will need to do is use another make target and change some jumpers. All that
is described when you run the target:

$ make recovery

3.2.4 HiKey 960

The instructions here will tell how to run OP-TEE on HiKey 960.

Supported HiKey960 boards

There are two different versions of the HiKey960 board.

Name Manufacturer Memory Flash Comment
HiKey960 Archermind/LeMaker 3GB 32GB v2 uses DIP Switches (SW2201)
HiKey960 Archermind/LeMaker 3GB 32GB v1 uses Jumpers (J2001)

UART adapter board

Everything is configured to use the 96Boards UART Serial adapter. The UART is by default configured to
UART6. If you have a v1 board and need to use UART5, then you need to change that before building. See
CFG_CONSOLE_UART in hikey960.mk.
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Build instructions

Just follow the instructions at “Get and build the solution”. If make flash doesn’t work, try make recovery.

Recovery

If you manage to corrupt the device, such that fastboot doesn’t load automatically on boot, then you will need to run
the recovery procedure. Basically what you will need to do is use another make target and change some jumpers. All
that is described when you run the target:

External guide

https://github.com/ARM-software/arm-trusted-firmware/blob/master/docs/plat/hikey960.rst

$ make recovery

3.2.5 Juno

The instructions here will tell how to run OP-TEE on the Juno board. The instructions has been tested and verified on
the Juno r0 revision (see Juno revisions for more details).

Regular build

First step is to start out by following the instructions in the Get and build the solution as described in build.

Deploy files on the device

Enter the firmware console on the Juno board and press enter to stop the auto boot.

ARM V2M_Juno Firmware v1.3.9
Build Date: Nov 11 2015

Time : 12:50:45
Date : 29:03:2016

Press Enter to stop auto boot...

Enable FTP at the firmware prompt.

Cmd> ftp_on
Enabling ftp server...
MAC address: xxxxxxxxxxxx

IP address: 192.168.1.158

Local host name = V2M-JUNO-A2

Flash the binary by running

Note: Use the IP address from output from previous command.
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$ make JUNO_IP=192.168.1.158 flash

Once all binaries have been transferred, reboot the board:

Cmd> reboot

Update the flash layout

The flash layout for Juno may need to be updated for the flashing above to work. If flashing fails or if TF-A refuses to
boot due to wrong version of the SCP binary, then the flash(-layout) needs to be updated. To update the flash please
follow the instructions at Arm’s old release notes page selecting one of the zips under “Development boards / Juno /
Prebuilt configurations” and flash it as described at Run the Arm Platforms deliverables on Juno.

GlobalPlatform testsuite support

Note: Depending on the Juno pre-built configuration, the built ramdisk.img size with GlobalPlatform testsuite
may exceed its pre-defined Juno flash memory reserved location (image.txt file). In that case, you will need to
extend the Juno flash block size reserved location for the ramdisk.img in the image.txt file accordingly and
follow the instructions under “5.7.1 Update flash and its layout”.

Example

Example with juno-latest-busybox-uboot.zip. The current ramdisk.img size with GlobalPlatform
testsuite is 8.6 MBytes and that is too big to fit in the default configuration, therefore we need to make adjustments to
the flash layout. You will do that by making changes to /JUNO/SITE1/HBI0262B/images.txt. I.e., from:

1 NOR4UPDATE: AUTO ;Image Update:NONE/AUTO/FORCE
2 NOR4ADDRESS: 0x01800000 ;Image Flash Address
3 NOR4FILE: \SOFTWARE\ramdisk.img ;Image File Name
4 NOR4NAME: ramdisk.img
5 NOR4LOAD: 00000000 ;Image Load Address
6 NOR4ENTRY: 00000000 ;Image Entry Point

to extending the Image Flash Address to 16MB

1 NOR4UPDATE: AUTO ;Image Update:NONE/AUTO/FORCE
2 NOR4ADDRESS: 0x01000000 ;Image Flash Address
3 NOR4FILE: \SOFTWARE\ramdisk.img ;Image File Name
4 NOR4NAME: ramdisk.img
5 NOR4LOAD: 00000000 ;Image Load Address
6 NOR4ENTRY: 00000000 ;Image Entry Point

GCC > 5.x support

Note: In case you are using the latest version of the OP-TEE Arm Juno build (i.e., juno.xml manifest), then the
ramdisk.img built with a GCC version newer than 5.x will be bigger than built with older GCC versions. This
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means that you will need to update the sections in image.txt that tells where various images will start (see the
image.txt file).

To solve this problem you will need to extend the Juno flash block size reserved location for the ramdisk.img and
decrease the size for other images in the image.txt file accordingly in the same manner as described in the previous
section above.

For example with juno-latest-busybox-uboot.zip. The current ramdisk.img size with GCC 5.x com-
piler is 29.15MB and therefore we will need to extend that size for that to 32MB. You do that by changing the
highlighted ones (i.e., Image Flash Address) in file /JUNO/SITE1/HBI0262B/images.txt.

1 NOR2UPDATE: AUTO ;Image Update:NONE/AUTO/FORCE
2 NOR2ADDRESS: 0x00100000 ;Image Flash Address
3 NOR2FILE: \SOFTWARE\Image ;Image File Name
4 NOR2NAME: norkern ;Rename kernel to norkern
5 NOR2LOAD: 00000000 ;Image Load Address
6 NOR2ENTRY: 00000000 ;Image Entry Point
7

8 NOR3UPDATE: AUTO ;Image Update:NONE/AUTO/FORCE
9 NOR3ADDRESS: 0x02C00000 ;Image Flash Address

10 NOR3FILE: \SOFTWARE\juno.dtb ;Image File Name
11 NOR3NAME: board.dtb ;Specify target filename to preserve file extension
12 NOR3LOAD: 00000000 ;Image Load Address
13 NOR3ENTRY: 00000000 ;Image Entry Point
14

15 NOR4UPDATE: AUTO ;Image Update:NONE/AUTO/FORCE
16 NOR4ADDRESS: 0x00D00000 ;Image Flash Address
17 NOR4FILE: \SOFTWARE\ramdisk.img ;Image File Name
18 NOR4NAME: ramdisk.img
19 NOR4LOAD: 00000000 ;Image Load Address
20 NOR4ENTRY: 00000000 ;Image Entry Point
21

22 NOR5UPDATE: AUTO ;Image Update:NONE/AUTO/FORCE
23 NOR5ADDRESS: 0x02D00000 ;Image Flash Address
24 NOR5FILE: \SOFTWARE\hdlcdclk.dat ;Image File Name
25 NOR5LOAD: 00000000 ;Image Load Address
26 NOR5ENTRY: 00000000 ;Image Entry Point

On this page you will find device specific information for QEMU v7 (Armv7-A) and QEMU v8 (Armv8-A).

3.2.6 QEMU v7

The instructions here will tell how to run OP-TEE using QEMU for Armv7-A.

Build instructions

As long as you pick the v7 manifest, i.e., default.xml the “Get and build the solution” tells all you need to know
to build and boot up QEMU v7.

Consoles

After running make run you will end up in the QEMU console and it will also spawn two UART consoles. One
console containing the UART for secure world and one console containing the UART for normal world. You will see
that it stops waiting for input on the QEMU console. To continue, do:
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(qemu) c

Host-Guest folder sharing

You can use the VirtFS QEMU feature to avoid changing rootfs CPIO archive every time you need to add additional
files or modify existing files. To do this, you share a folder between the guest and host operating systems. To enable
and use this feature you have to provide additional arguments when running make, example:

$ make QEMU_VIRTFS_ENABLE=y QEMU_USERNET_ENABLE=y

Hint: You can also add QEMU_VIRTFS_HOST_DIR=<share> in case you don’t want to use the default sharing
location (which is the root of <qemu-v7-project>).

When QEMU with OP-TEE is up and running, you can mount the host folder in QEMU (normal world UART).

# mount -t 9p -o trans=virtio host <mount_point>

<mount_point> here is folder in the QEMU where you want to mount the host PC’s shared folder. So if you want
to mount it at /mnt/host you typically do this from QEMU NW/UART.

# mkdir -p /mnt/host
# mount -t 9p -o trans=virtio host /mnt/host

Networking

After booting QEMU, eth0 will automatically receive an IP address from QEMU via DHCP using the SLiRP user
networking feature. QEMU will act as a gateway to the host network SLiRP.

Please note that ICMP won’t work in the guest unless additional configuration is made, so the ping utility won’t
work.

GDB - Normal world

If you need to debug a client application, using GDB in a remote debugging configuration may be useful. Remote
debugging means gdb runs on your PC, where it can access the source code, while the program being debugged runs
on the remote system (in this case, in the QEMU environment in normal world). Here is how to do that. On your PC,
build with GDBSERVER=y:

$ cd <qemu-v7-project>/build
# You **only** need to rm -rf the first time you build with the new flag.
# If you omit doing so, it's likely that you will see "stamp" errors in the
# build log.
$ rm -rf <qemu-v7-project>/out-br
$ make -j8 run GDBSERVER=y

Boot up as usual

(qemu) c

Inside QEMU (Normal World UART), run your application with gdbserver (for example xtest 4002):
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# gdbserver :12345 xtest 4002
Process xtest created; pid = 654
Listening on port 12345

Back on your PC, open another terminal, start GDB and connect to the target:

$ <qemu-v7-project>/out-br/host/bin/arm-buildroot-linux-gnueabihf-gdb
(gdb) set sysroot <qemu-v7-project>/out-br/host/arm-buildroot-linux-gnueabihf/sysroot
(gdb) target remote :12345

Now GDB is connected to the remote application. You may use GDB normally.

(gdb) b main
(gdb) c

GDB - Secure world

TEE core debugging

To debug TEE core running QEMU with GDB, you don’t have to enable any special flags as such, but it’s easier to
debug if you have optimization disabled. Other than that you will have four consoles that you are working with.

• Qemu console

• NW UART console

• SW UART console

• GDB console

All of them but the GDB console are consoles you normally will see/use when running OP-TEE/xtest using QEMU.
The first thing is to start QEMU, i.e.,

$ cd <qemu-v7-project>/build
# make run-only also works if you don't want to rebuild things
$ make run

Next launch another console for GDB and do this

$ cd <qemu-v7-project>/toolchains/aarch32/bin
$ ./arm-linux-gnueabihf-gdb -q

In the GDB console connect to the QEMU GDB server, like this (the output is included to show what you normally
will see).

(gdb) target remote localhost:1234
Remote debugging using localhost:1234
warning: No executable has been specified and target does not support
determining executable automatically. Try using the "file" command.
0x00000000 in ?? ()

Still in the GDB console, load the symbols for TEE core

(gdb) symbol-file <qemu-v7-project>/optee_os/out/arm/core/tee.elf
Reading symbols from <qemu-v7-project>/optee_os/out/arm/core/tee.elf...done.

Now you can set a breakpoint for any symbol in OP-TEE, for example
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(gdb) b tee_entry_std
Breakpoint 1 at 0xe103012: file core/arch/arm/tee/entry_std.c, line 526.

Last step is to initiate the boot, do that also from the GDB console

(gdb) c
Continuing.

At this point will see UART output in the Normal world console as well as the Secure world UART console. If you
now for example Run xtest, then you will rather soon hit the breakpoint we previously set and you will see something
like this in the GDB console:

Continuing.
[Switching to Thread 2]

Thread 2 hit Breakpoint 1, tee_entry_std (smc_args=0xe183f18
<stack_thread+8216>) at core/arch/arm/tee/entry_std.c:526
526 struct optee_msg_arg *arg = NULL; /* fix gcc warning */
(gdb)

From here you can start to poke around with GDB, single step, read memory, read registers, print variables and all
sorts of things that you normally do with a debugger.

Hint: Some people find it easier to also see the source code while debugging. You can enable the “TUI mode” to see
the source code in GDB. To enable that, run GDB with

$ ./arm-linux-gnueabihf-gdb -q -tui

3.2.7 QEMU v8

The instructions here will tell how to run OP-TEE using QEMU for Armv7-A.

Build instructions

As long as you pick the v8 manifest, i.e., qemu_v8.xml the “Get and build the solution” tells all you need to know
to build and boot up QEMU v8.

All other things (networking, GDB etc) in the v7 section above is also applicable on QEMU v8 as long as you replace
<qemu-v7-project> with <qemu-v8-project> to get the correct paths relative to your QEMU v8 setup.

3.2.8 Raspberry Pi 3

Sequitur Labs did the initial OP-TEE port which at the time also came with modifications in U-Boot, Trusted Firmware
A and Linux kernel. Since that initial port more and more patches have found mainline trees and today the OP-TEE
setup for Raspberry Pi 3 uses only upstream tree’s with the exception of Linux kernel.
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Disclaimer

Warning: This port of Trusted Firmware A and OP-TEE to Raspberry Pi 3 IS NOT SECURE! Although the
Raspberry Pi3 processor provides ARM TrustZone exception states, the mechanisms and hardware required to im-
plement secure boot, memory, peripherals or other secure functions are not available. Use of OP-TEE or TrustZone
capabilities within this package does not result in a secure implementation. This package is provided solely for
educational purposes and prototyping.

What is expected to work?

First, note that all OP-TEE developer builds (ref, build) have rather simple overall goals:

• Successfully build OP-TEE for certain devices.

• Run xtest and optee_example binaries successfully with no regressions using UART(s).

I.e., it is important to understand that our “OP-TEE developer builds” shall not be compared with full Linux distribu-
tions which supports “everything”. As a couple of examples, we don’t enable any particular drivers in Linux kernel, we
don’t include all sorts of daemons, we do not include an X-environment etc. At the same time this doesn’t mean that
you cannot use OP-TEE in real environments. It is usually perfectly fine to run on all sorts of devices, environments
etc. It’s just that for the OP-TEE developer builds we have intentionally stripped down the environment to make it
rather fast to get all the source code, build it all and run xtest.

We are highlighting this here, since over the years we have had many questions at GitHub about things that people
usually find working on their Raspberry Pi devices when they are using Raspbian (which this is not). The table below
describes what is officially supported in the Raspberry Pi 3 OP-TEE developer builds and right after that follows
sections for each of giving a bit more context to it.

Name Supported?
Buildroot Yes
HDMI No
NFS Yes
Random packages Maybe
Raspbian No
Secure boot Maybe
TFTP Yes
UART Yes
Wi-Fi No

Buildroot

We are using Buildroot as the tool to create a stripped down filesystem for Linux where we also put OP-TEE binaries
like Trusted Applications, client libraries and TEE supplicant. If a user wants to add/enable additional packages, then
that is also possible by adding new lines in common.mk in build (search for BR2_PACKAGE_ in the git to see how
it’s done).

HDMI

X isn’t enabled and we have not built nor enabled any drivers for graphics.
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NFS

Works to boot up a Linux root filesystem, more on that further down.

Random packages

See the Buildroot section above. You can enable packages supported by Buildroot, but as mentioned initially in this
section, lack of drivers and other daemons etc might make it impossible to run.

Raspbian

We are not using it. However, people (from Sequitur Labs) have successfully been able to add OP-TEE to Raspbian
builds. But since we’re not using it and haven’t tried, we simply don’t support it.

Secure boot

First pay attention to the initial warning on this page. I.e., no matter what you are doing with Raspberry Pi and
TrustZone / OP-TEE you cannot make it secure. But that doesn’t mean that you cannot “enable” secure features as
such for prototyping and to learn how to build and use those. That kind of knowledge can later on be transferred and
used on other devices which have all the necessary secure capabilities needed to make a secure system. We haven’t
tested to enable secure boot on Raspberry Pi 3. But we believe that a good starting point would be Trusted Firmware
A’s documentation about the “Authentication Framework” and RPi3 in TF-A.

TFTP

When you reach U-Boot (see Boot sequence), then you can start using TFTP to load boot firmware etc. Note that if
you overwrite armstub8.bin for example and that happens to be faulty, then you will need to re-mount the BOOT
partition on the SD-card and put a new working version of it. Also note that changing early boot binaries (TF-A,
OP-TEE core etc) will require you to reboot the device see the changes.

UART

Fully supported, for more details look at the UART section further down.

Wi-Fi

Even though Raspberry Pi 3 has a Wi-Fi chip, we do not support it in our stripped down builds.

What versions of Raspberry Pi will work?

Below is a table of supported hardware in our OP-TEE developer builds. We have only used the Raspberry Pi 3 Model
B, i.e., the first RPi 3 device that was released. But we know that people have successfully been able to use it with
both RPi 2’s as well as the newer RPi 3 B+. But as long as we in the core team doesn’t have those at hands we cannot
guarantee anything, therefore we simply say “No” below.
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Hardware Supported?
Raspberry Pi 1 Model A No
Raspberry Pi 1 Model B No
Raspberry Pi 1+ Model A No
Raspberry Pi 1+ Model B No
Raspberry Pi 2 Model B No
Raspberry Pi 2 Model B v1.2 No
Raspberry Pi 3+ Model A No
Raspberry Pi 3 Model B Yes
Raspberry Pi 3+ Model B No
Zero - all versions No
Compute module - all versions No

Boot sequence

• The GPU starts executing the first stage bootloader, which is stored in ROM on the SoC. The first stage boot-
loader reads the SD-card, and loads the second stage bootloader (bootcode.bin) into the L2 cache, and runs
it.

• bootcode.bin enables SDRAM, and reads the third stage bootloader loader.bin from the SD-card into
RAM, and runs it.

• loader.bin reads the GPU firmware (start.elf).

• start.elf reads config.txt, pre-loads armstub8.bin (which contains: BL1/TF-A + BL2/TF-A +
BL31/TF-A + BL32/OP-TEE + BL33/U-boot) to 0x0 and jumps to the first instruction.

• A traditional boot sequence of TF-A -> OP-TEE -> U-boot is performed, i.e., BL1 loads BL2, then BL2 loads
and run BL31(SM), BL32(OP-TEE), BL33(U-boot) (one after another)

• U-Boot runs fatload/booti sequence to load from eMMC to RAM both zImage and then DTB and boot.

Build instructions

1. Start by following the Get and build the solution as described in build, but stop at the “Step 6 - Flash the device”
step (i.e., don’t run the make flash command!).

2. Next step is to partition and format the memory card and to put the files onto the same. That is something we
don’t want to automate, since if anything goes wrong, in worst case it might wipe one of your regular hard disks.
Instead what we have done, is that we have created another makefile target that will tell you exactly what to do.
Run that command and follow the instructions there.

$ make img-help

Note: The mention of /dev/sdx1 and /dev/sdx2 when running the command above are just examples.
You need to figure out and replace that with the correct name(s) for your computer and SD-card (typically run
dmesg and look for the device name matching your SD-card).

3. Put the SD-card back into the Raspberry Pi 3.

4. Plug in the UART cable and attach to the UART

$ picocom -b 115200 /dev/ttyUSB0
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Note: Install picocom if not already installed $ sudo apt-get install picocom.

5. Power up the Raspberry Pi 3 and the system shall start booting which you will see on the UART (not HDMI).

6. When you have a shell, then it’s simply just to follow the “Step 9 - Run xtest” instructions.

NFS boot

Booting via NFS is quite useful for several reasons, but the obvious reason when working with Raspberry Pi is that you
don’t have to move the SD-card back and forth between the host machine and the Raspberry Pi 3 itself when working
with Normal World files, like Linux kernel and user space programs. Here we will describe how to setup NFS server,
so the rootfs can be mounted via NFS.

Warning: This guide doesn’t focus on any desktop security, so eventually you would need to harden your setup.

In the description below we will use the following terminology, IP addresses and paths. The reader of this guide is
supposed to update this to match his own environment.

192.168.1.100 <--- This is your desktop computer (NFS server)
192.168.1.200 <--- This is the Raspberry Pi
/srv/nfs/rpi <--- Location for the NFS share

Configure NFS

Start by installing the NFS server

$ sudo apt-get install nfs-kernel-server

Then edit the exports file,

$ sudo vim /etc/exports

In this file you shall tell where your files/folder are and the IP’s allowed to access the files. The way it’s written below
will make it available to every machine on the same subnet (again, be careful about security here). Let’s add this line
to the file (it’s the only line necessary in the file, but if you have several different filesystems available, then you should
of course add them too, one line for each share).

/srv/nfs/rpi 192.168.1.0/24(rw,sync,no_root_squash,no_subtree_check)

Next create the folder where you are going to put the root filesystem

$ sudo mkdir /srv/nfs/rpi

After this, restart the NFS kernel server

$ service nfs-kernel-server restart

Hint: To see that your shares are correctly setup and that the NFS server is running, you can run: $ showmount
--all localhost and you should get a list of IP:<path>'s based on what you have added in your exports file.
If you get nothing there, then your NFS server hasn’t been setup correctly.
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Prepare files to be shared

We are now going to put the root filesystem on the location we prepared in the previous section.

Note: The path to the rootfs.cpio.gz refers to <rpi3-project>, replace this so it matches your setup.

$ cd /srv/nfs/rpi
$ sudo gunzip -cd <rpi3-project>/out-br/images/rootfs.cpio.gz | sudo cpio -idmv
$ sudo rm -rf /srv/nfs/rpi/boot/*

uboot.env configuration

The file uboot.env contains boot configurations that tells what binaries to load and at what addresses. When using
NFS you need to tell U-Boot where the NFS server is located (IP and path). Since the exact IP and path varies for each
user, we must update uboot.env accordingly.

There are two ways to update uboot.env, one is to update uboot.env.txt (in build) and the other is to update
directly from the U-Boot console. Pick the one that you suits your needs. We will cover each of them separately here.

Change uboot.env.txt

In an editor open: <rpi3-project>/build/rpi3/firmware/uboot.env.txt and change:

• nfsserverip to match the IP address of your NFS server.

• gatewayip to the IP address of your router.

• nfspath to the exported filesystem in your NFS share.

As an example a section of uboot.env.txt could look like this:

# NFS/TFTP boot configuraton
gatewayip=192.168.1.1
netmask=255.255.255.0
nfsserverip=192.168.1.100
nfspath=/srv/nfs/rpi

Next, you need to re-generate uboot.env:

$ cd <rpi3-project>/build
$ make u-boot-env-clean
$ make u-boot-env

Finally, you need to copy the updated <rpi3-project>/out/uboot.env to the BOOT partition of your SD-
card (mount it as described in Build instructions and then just overwrite (cp) the file on the BOOT partition of your
SD-card).

Update u-boot.env from U-Boot console

Boot up the device until you see U-Boot running and counting down, then hit any key and will see the U-Boot>
prompt. You can then update the nfsserverip, gatewayip and nfspath by writing
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U-Boot> setenv nfsserverip '192.168.1.100'
U-Boot> setenv gatewayip '192.168.1.1'
U-Boot> setenv nfspath '/srv/nfs/rpi'

If you want those environment variables to persist between boots, then type.

U-Boot> saveenv

Boot up with NFS

With all preparations above done correctly, you should now be able to boot up the device and kernel, secure side
OP-TEE and the entire root filesystem should be loaded from the network shares (NFS). Power up the Raspberry, halt
in U-Boot and then type.

U-Boot> run nfsboot

If everything works, you can simply copy paste files like xtest, Trusted Applications and other things that usually
resides on the host PC’s filesystem, i.e., directly from your build folders to the /srv/nfs/rpi/... folders. By
doing so you don’t have to reboot the device when doing development and testing. Just rebuild and copy is sufficient.

Note: You cannot make symlinks in the NFS share to the built files, i.e., you must copy them!

JTAG

To enable JTAG you need to add a line saying enable_jtag_gpio=1 in config.txt. There are two ways you
can do this, both requires that you to mount the BOOT partition on the SD-card at your computer (see the make
img-help step under Build instructions). After you have mounted the BOOT partition continue with whichever way
is most suitable for you.

Change config.txt directly

With your editor, open /media/boot/config.txt and add a line enable_jtag_gpio=1, save the file, un-
mount the BOOT partition and you’re good to go after rebooting the device.

Rebuild and untar

1. With your editor, open <rpi3-project>/build/rpi3/firmware/config.txt and add a line
enable_jtag_gpio=1, save the file.

2. $ cd <rpi3-project>/build && make

3. $ cd /media

4. $ sudo gunzip -cd <rpi3-project>/out-br/images/rootfs.cpio.gz | sudo cpio
-idmv "boot/*"

Note: You didn’t forget to mount the BOOT partition before trying this step?

5. Unmount the BOOT partition and you’re good to go after rebooting the device.
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JTAG/RPi3 cable

We have created our own cables that consists of a standard 20-pin JTAG connector and a 22-pin connector for the
Raspberry Pi 3 itself. Then using a ribbon cable we have connected the cables according to the table below (JTAG pin
<-> Raspberry Pi 3 Header pin).

JTAG pin Signal GPIO Mode RPi3 Header pin
1 3v3 N/A N/A 1
3 nTRST GPIO22 ALT4 15
5 TDI GPIO26 ALT4 37
7 TMS GPIO27 ALT4 13
9 TCK GPIO25 ALT4 22
11 RTCK GPIO23 ALT4 16
13 TDO GPIO24 ALT4 18
18 GND N/A N/A 14
20 GND N/A N/A 20

Warning: Be careful and cross check the wiring as incorrect wiring might damage your device! Also be careful
to connect the cable correctly at both ends (don’t flip it and don’t put it at the wrong pins in the Raspberry Pi 3
side).

UART/RPi3 cable

In addition to the JTAG connections we have also wired up the RX/TX to be able to use the UART. Note, for this you
don’t need to do JTAG wirings, i.e., it’s perfectly fine to just wire up the UART only. There are many ready made
cables for this on the net (eBay) and cost almost nothing. Get one of those if you don’t intend to use JTAG.

UART pin Signal GPIO Mode RPi3 Header pin
Black (GND) GND N/A N/A 6
White (RXD) TXD GPIO14 ALT0 8
Green (TXD) RXD GPIO15 ALT0 10

Warning: Be careful and cross check the wiring as incorrect wiring might damage your device!

OpenOCD

Build OpenOCD

Before building OpenOCD, ensure that you have the libusb-dev installed.

$ sudo apt-get install libusb-1.0-0-dev

We are using the official OpenOCD release, simply clone that to your computer and then building is like a lot of other
software, i.e.,
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$ git clone http://repo.or.cz/openocd.git
$ cd openocd
$ ./bootstrap
$ ./configure
$ make

Note: In recent versions of OpenOCD, the legacy ft2332 support has been depracted. All these devices now uses
libftdi instead. From OpenOCD release notes: “GPL-incompatible FTDI D2XX library support dropped (Presto,
OpenJTAG and USB-Blaster I are using libftdi only now)”.

We leave it up to the reader of this guide to decide if he wants to install it properly (make install) or if he will
just run it from the tree directly. The rest of this guide will just run it from the tree.

OpenOCD RPi3 configuration file

Unfortunately, the necessary RPi3 OpenOCD config isn’t upstreamed yet into the official OpenOCD repository, so
you should use the one stored here <rpi3-project/build/rpi3/debugger/pi3.cfg.

Running OpenOCD

Depending on the JTAG debugger you are using you’ll need to find and use the interface file for that particular
debugger. We’ve been using J-Link debuggers and Bus Blaster successfully. To start an OpenOCD session using
a J-Link device you type:

$ cd <openocd>
$ ./src/openocd -f ./tcl/interface/jlink.cfg -f <rpi3-project>/build/rpi3/debugger/
→˓pi3.cfg

For Bus Blaster type:

$ ./src/openocd -f ./tcl/interface/ftdi/dp_busblaster.cfg \ -f <rpi3_repo_dir>/build/
→˓rpi3/debugger/pi3.cfg

To be able to write commands directly to OpenOCD, you simply open up another shell and type:

$ nc localhost 4444

From there you can set breakpoints, examine memory etc (“> help” will give you a list of available commands).
Having that said, if you connect to OpenOCD using GDB, then there is not much incentive connecting to OpenOCD
directly, since you will be able to do the same in GDB by the monitor command.

Use GDB

OpenOCD will by default listen to GDB connections on port 3333. So after starting OpenOCD, make a connection
to GDB.

# Ensure that you have "gdb" in your $PATH
$ aarch64-linux-gnu-gdb -q
(gdb) target remote localhost:3333
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To load symbols you just use the symbol-file <path/to/my.elf as usual. For convenience you can create
an alias in the ~/.gdbinit file. For TEE core debugging this works:

define jtag_rpi3
target remote localhost:3333
symbol-file <rpi3-project>/optee_os/out/arm/core/tee.elf

end

So, when running GDB, you simply type: (gdb) jtag_rpi3 and it will both connect and load the symbols for
TEE core. For Linux kernel and other binaries you would do the same.

Debug session example

After making an initial Raspberry Pi 3 build for OP-TEE where you’ve enabled JTAG, installed and built OpenOCD,
connected the JTAG cable, then you’re ready for debugging OP-TEE using JTAG on Raspberry 3. Boot up the Rasp-
berry Pi 3 until you are in Linux and ready to run xtest. Start a new shell (on the host machine) where you run
OpenOCD:

$ cd <openocd>
$ ./src/openocd -f ./tcl/interface/jlink.cfg -f <rpi3-project>/build/rpi3/debugger/
→˓pi3.cfg

Start another shell, where you run GDB

$ <rpi3-project>/toolchains/aarch64/bin/aarch64-linux-gnu-gdb -q
(gdb) target remote localhost:3333
(gdb) symbol-file <rpi3-project>/optee_os/out/arm/core/tee.elf

Next, try to set a breakpoint for the function hmac_init, here use hardware breakpoints (i.e., hb)!

(gdb) hb hmac_init
Hardware assisted breakpoint 2 at 0x1012a178: file core/lib/libtomcrypt/src/mac/hmac/
→˓hmac_init.c, line 65.
(gdb) c
Continuing.

In the UART console (RPi3/Linux), run xtest.

# xtest

And shortly thereafter you will see GDB stops on your breakpoint and from there you can debug using normal GDB
commands.

3.2.9 Texas Instruments SoCs

The instructions here will tell how to run OP-TEE on Texas Instruments devices. Secure TI devices require a boot
image that is authenticated by ROM code to function. Without this, even JTAG remains locked. In order to create
a valid boot image for a secure device from TI, the initial public software image must be signed and combined with
various headers, certificates, and other binary images.

Information on the details on the complete boot image format can be obtained from Texas Instruments. The tools
used to generate boot images for secure devices are part of a secure development package (SECDEV) that can be
downloaded from:

http://www.ti.com/mysecuresoftware (login required)
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The secure development package is access controlled due to NDA and export control restrictions. Access must be
requested and granted by TI before the package is viewable and downloadable. Contact TI, either online or by way of
a local TI representative, to request access.

Regular build

Start out by following the Get and build the solution as described in build. Stop before the section on flashing the
device, this is currently not supported automatically.

Booting the device

SD Card boot

Create two partitions on an SD card, boot of type FAT16 and rootfs of type EXT4. To prevent accidental data
loss we do not attempt this automatically (the RPI3 Build instructions use a similar SD card layout, you can refer to
that page for details).

Extract the generated rootfs to the rootfs partition

$ cd <SD card rootfs partition>
$ gunzip -cd <repo directory>/gen_rootfs/filesystem.cpio.gz | sudo cpio -idm

Add the bootloader to the boot partition

$ cd <SD card boot partition>
$ cp <repo directory>/u-boot/u-boot-spl_HS_MLO MLO
$ cp <repo directory>/u-boot/u-boot_HS.img u-boot.img

3.2.10 ZynqMP zcu10x and Ultra96

Instructions below show how to run OP-TEE on ZynqMP zcu10x and Ultra96 board.

Supported boards

This makefile supports the following ZynqMP boards:

• zcu102

• zcu104

• zcu106

• Ultra96v1

Setting up the toolchain

This build chain heavily relies on Petalinux 2018.2 therefore the first step is to download and install the Petalinux
2018.2 toolchain from the Xilinx website (Downloads). Then, you have to download the needed BSP file from the
Xilinx website (Downloads). You may have to create a free Xilinx account to proceed with the two previous steps.

Since OP-TEE 3.6.0, building process relies on pyelftools and pycrypto package which are not available in the python
distribution provided with Petalinux, you have to manually install it by following steps described hereafter (replace
/path/to/petalinux with the right path):
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$ sudo apt install python3.5 python3-pip

$ pip3 install --system --target=/path/to/petalinux/components/yocto/
source/aarch64/buildtools/sysroots/x86_64-petalinux-linux/usr/lib/
python3.5/site-packages/ pycrypto

$ pip3 install --system --target=/path/to/petalinux/components/yocto/
source/aarch64/buildtools/sysroots/x86_64-petalinux-linux/usr/lib/
python3.5/site-packages/ pyelftools

Configuring and building for zcu102 board

First, create a new directory which will be used as root directory:

$ mkdir -p ~/petalinux-optee
$ cd ~/petalinux-optee

Then, copy the zcu102 BSP file into the newly created directory:

$ cp ~/Downloads/xilinx-zcu102-v2018.2-final.bsp .

Git clone the build repository of the OP-TEE project and source the Petalinux settings:

$ git clone https://github.com/OP-TEE/build
$ cd ./build
$ source /path/to/petalinux/settings.sh

Finally, use the following commands to create, patch, configure and build the Petalinux project. Petalinux is a powerful
but very slow tool, each command may take a while according to the capabilities of your computer.

$ make -f zynqmp.mk

Once the last command ends up you are ready to run QEMU tool or to make a bootable SD card. To run QEMU:

$ make -f zynqmp.mk qemu

QEMU will start and launch Petalinux distribution. At the end of the boot process, log in using username root and
password root. Start the OP-TEE Normal World service and run xtest:

$ tee-supplicant -d
$ xtest

You can close QEMU session at any time by typing Ctrl-A+C and entering the quit command.

Configuring and building for other ZynqMP boards

To use this makefile with other supported boards, you have to download the corresponding BSP and add option
PLATFORM to each make command.

$ make -f zynqmp.mk PLATFORM=zcu106
$ make -f zynqmp.mk PLATFORM=zcu106 qemu

Hereafter the list of available PLATFORM:

• zcu102
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• zcu104

• zcu106

• ultra96-reva

Warning: On Ultra96 board, UART is not directly available. You have to connect through WIFI Access Point
using the procedure detailed here Getting started.

SD card creation

After completion of building process, you can create a bootable SD card. Here, we consider that SD card corresponds
to /dev/sdb. We will use gparted and e2image tools.

Using gparted or any other partition manager tool create two partitions on the card:

• 1GB FAT32 bootable partition (/dev/sdb1 hereafter).

• EXT4 partition on the remaining memory space (/dev/sdb2 hereafter).

Once SD card is partitioned, use the following commands:

$ cp /path/to/project/images/linux/BOOT.BIN /dev/sdb1
$ cp /path/to/project/images/linux/image.ub /dev/sdb1
$ sudo e2image -rap /path/to/project/images/linux/rootfs.ext4 /dev/sdb2

Now you can use the newly created SD card to boot your board.

Note: Check that your board is actually configured to boot on the SD card.

Building a given version of OP-TEE

By default, the lastest version of OP-TEE is built. If you wish you can build a given version of OP-TEE instead of the
last one by using variable OPTEE_VER with target petalinux-config. See below an example where OP-TEE
v3.4.0 is built.

$ make -f zynqmp.mk petalinux-create
$ make -f zynqmp.mk OPTEE_VER=3.4.0 petalinux-config
$ make -f zynqmp.mk petalinux-build

Customizing the Petalinux distribution

You can customize the Petalinux project (i.e. kernel, rootfs, . . . ) as any standard Petalinux project. Just enter
the project directory and type your commands. For additional information, refer to Petalinux Tool Documentation
(UG1144).
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3.3 Linux kernel TEE framework

3.4 OP-TEE gits

These are the gits considered as the main OP-TEE gits which together makes up the entire TEE solution.

3.4.1 build

Why this particular git? As it turns out it’s totally possible to put together everything on your own. You can build
all the individual components, os, client, xtest, Linux kernel, TF-A, TianoCore, QEMU, Buildroot etc and put all the
binaries at correct locations and write your own command lines, Makefiles, shell-scripts etc that will work nicely on
the devices you are interested in. If you know how to do that, fine, please go a head. But for newcomers it’s way to
much behind the scenes to be able to setup a working environment. Also, if you for some reason want to run something
in an automated way, then you need something else wrapping it up for you.

With this particular git built.git our goal is to simply to make it easy for newcomers to get started with OP-TEE using
the devices we’ve listed in this document.

git location

https://github.com/OP-TEE/build

Why repo?

We discussed alternatives, initially we started out with having a simple shell-script, that worked to start with, but after
getting more gits in use and support for more devices it started to be difficult to maintain. In the end we ended up
choosing between repo from the Google AOSP project and git submodules. No matter which you choose, there will
always be some person arguing that one is better than the other. For us we decided to use repo. Not directly for
the features itself from repo, but for the ability to simply work with different manifests containing both stable and
non-stable release. Using some tips and tricks you can also speed up setup time significantly. For day to day work
with commits, branches etc we tend to use git commands directly.

Root filesystem

The rootfs in the builds that we cover here are as small as possible and is based on a stripped down Buildroot configu-
ration adding just enough in the rootfs such that one can:

• Boot OP-TEE.

• Run xtest with no regressions.

• Easily add additional developer tools like, strace, valgrind etc.

Note: As a consequence of enabling “just enough”, it is likely that non-UART based enviroments won’t work out of
the box. I.e., if you try to boot up an enviroment using HDMI and connect keyboards and other devices it is likely that
things will not work. To make them work, you probably need to rebuild Linux kernel with correct drivers/frameworks
enabled and in addition to that enable binaries/daemons in Buildroot that might be necessary (user space tools and
drivers).
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How do I build using AOSP / OpenEmbedded?

For guides how to build AOSP, please refer to our AOSP page. For OpenEmbedded we have no guide ready, however
there are teams in Linaro who are building OP-TEE using OpenEmbedded. If you want to get in contact with them,
please reach out to us (see Contact).

Platforms supported by build.git

Below is a table showing the platforms supported by build.git. OP-TEE as such supports many more platforms, but
since quite a few of the other platforms are maintained by people outside Linaro or are using a special setup, we
encourage you to talk to the maintainer of that platform directly if you have build related questions etc. Please see the
MAINTAINERS file for contact information.

Platform Composite flag Publicly available?
ARM Juno Board PLATFORM=vexpress-juno Yes
ARM Foundation FVP PLATFORM=vexpress-fvp Yes
DeveloperBox PLATFORM=synquacer Yes
HiKey Kirin 620 PLATFORM=hikey Yes
HiKey 960 PLATFORM=hikey-hikey960 Yes
MediaTek MT8173 EVB Board (deprecated) PLATFORM=mediatek-mt8173 No
Poplar PLATFORM=poplar Yes
QEMU PLATFORM=vexpress-qemu_virt Yes
QEMUv8 PLATFORM=vexpress-qemu_armv8a Yes
Raspberry Pi 3 PLATFORM=rpi3 Yes
Texas Instruments DRA7xx PLATFORM=ti-dra7xx Yes
Texas Instruments AM57xx PLATFORM=ti-am57xx Yes
Texas Instruments AM43xx PLATFORM=ti-am43xx Yes

Manifests

Current version

Here is a list of manifests for the devices currently supported in build.git. With these you will get a setup
containing the all necessary software components to run OP-TEE on the chosen device. Beware that this will run
latest available on OP-TEE gits meaning that if you re-sync then you will most likely get new commits. If you need a
stable/tagged version with non-moving gits, then please refer to the next section instead.

Target Manifest xml Device documentation
AM43xx am43xx.xml Texas Instruments SoCs
AM57xx am57xx.xml Texas Instruments SoCs
DeveloperBox synquacer.xml DeveloperBox
ARM Juno board juno.xml Juno
DRA7xx dra7xx.xml Texas Instruments SoCs
FVP fvp.xml FVP
HiKey 960 hikey960.xml HiKey 960
HiKey hikey.xml HiKey 620
Poplar Debian poplar.xml
QEMU default.xml QEMU v7
QEMUv8 qemu_v8.xml QEMU v8
Raspberry Pi 3 rpi3.xml Raspberry Pi 3
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Stable releases

Starting from OP-TEE v3.1 you can check out stable releases by using the same manifests as for current version
above, but with the difference that you also need to specify a branch where the name corresponds to the release
version. I.e., when we are doing releases we are creating a branch with a name corresponding to the release version.
So, let’s for example say that you want to checkout a stable OP-TEE v3.4 for Raspberry Pi 3, then you do like this
instead of what is mentioned further down in section “Step 3 - Get the source code” (note the -b 3.4.0):

...
$ repo init -u https://github.com/OP-TEE/manifest.git -m rpi3.xml -b 3.4.0
...

Stable releases prior to OP-TEE v3.1 (v1.0.0 to v3.0.0)

Before OP-TEE v3.1 we used to have separate xml-manifest files for the stable builds. If you for some reason need
an older stable release, then you can use the xyz_stable.xml file corresponding to your device. The way to
init repo is almost the same as described above, the major difference is the name of manifest being referenced (-m
xyz_stable.xml) and that we are referring to a tag instead of a branch (-b refs/tags/MAJOR.MINOR.
PATCH). So as an example, if you need to setup the 2.1.0 stable release for HiKey, then you would do like this
instead of what is mentioned further down in section “Step 3 - Get the source code”.

...
repo init -u https://github.com/OP-TEE/manifest.git -m hikey_stable.xml -b refs/tags/
→˓2.1.0
...

Here is a list of targets and the names of the stable manifests files which were supported by older releases:

Target Stable manifest xml
AM43xx am43xx_stable.xml
AM57xx am57xx_stable.xml
ARM Juno board juno_stable.xml
DRA7xx dra7xx_stable.xml
FVP fvp_stable.xml
HiKey 960 hikey960_stable.xml
HiKey Debian hikey_debian_stable.xml
HiKey hikey_stable.xml
MTK8173 mt8173-evb_stable.xml
QEMU default_stable.xml
QEMUv8 qemu_v8_stable.xml
Raspberry Pi 3 rpi3_stable.xml

Get and build the solution

Below we will describe the general way of how to get the source, build the solution and how to run xtest on the device.
For device specific instructions, please see the links in the table in the “Current version” section.

Step 1 - Prerequisites

Install prerequisites according to the Prerequisites page.
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Step 2 - Install Android repo

Note that here you don’t install a huge SDK, it’s simply a Python script that you download and put in your $PATH,
that’s it. Exactly how to “install” repo, can be found at the Google repo pages, so follow those instructions before
continuing.

Step 3 - Get the source code

Choose the manifest corresponding to the platform you intend to use (see the table in section “Current version”. For
example, if you intend to use Raspberry Pi3, then at line 3 below, ${TARGET}.xml shall be rpi3.xml. The
<optee-project> is whatever location where you want to store the entire OP-TEE developer setup.

1 $ mkdir -p <optee-project>
2 $ cd <optee-project>
3 $ repo init -u https://github.com/OP-TEE/manifest.git -m ${TARGET}.xml [-b ${BRANCH}]
4 $ repo sync -j4 --no-clone-bundle

Hint: By referencing an existing and locally saved repo forest you can save lots of time. We are talking about doing
repo sync in 30 seconds instead of 15-30 minutes (see the Tips and Tricks section for more details).

Step 4 - Get the toolchains

In OP-TEE we’re using different toolchains for different targets (depends on ARMv7-A ARMv8-A 64/32bit solutions).
In any case start by downloading the toolchains by:

$ cd <optee-project>/build
$ make -j2 toolchains

Step 5 - Build the solution

We’ve configured our repo manifests, so that repo will always automatically symlink the Makefile to the correct
device specific makefile, that means that you simply start the build by running (still in <optee-project>/build)

$ make -j `nproc`

This step will also take some time, but you can speed up subsequent builds by enabling ccache (again see Tips and
Tricks).

Hint: If you’re having build issues, then you can pipe the entire build log to a file, which makes it easier to search
for the issue using a regular editor. In that case also avoid the -j flag so it’s easier to see in what order things are
happening. To create a build.log file do: $ make 2>&1 | tee build.log

Step 6 - Flash the device

On non-emulated solutions (this means that you shouldn’t do this step when you are running QEMU-v7/v8 and FVP),
you will need to flash the software in some way. We’ve tried to “hide” that under the following make target:
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$ make flash

But, since some devices are trickier to flash than others, please see the Device specific information. See this just as a
general instruction.

Step 7 - Boot up the device

This is device specific (see Device specific information).

Step 8 - Load tee-supplicant

On most solutions tee-supplicant is already running (check by running $ ps aux | grep tee-supplicant)
on others not. If it’s not running, then start it by running:

$ tee-supplicant -d

Note: If you’ve built using our manifest you should not need to modprobe any OP-TEE/TEE kernel driver since it’s
built into the kernel in all our setups.

Step 9 - Run xtest

The entire xtest test suite has been deployed when you we’re making the builds in previous steps, i.e, in general there
is no need to copy any binaries manually. Everything has been put into the Root filesystem automatically. So, to run
xtest, you simply type:

$ xtest

If there are no regressions / issues found, xtest should end with something like this:

...
+-----------------------------------------------------
23476 subtests of which 0 failed
67 test cases of which 0 failed
0 test case was skipped
TEE test application done!

Hint: For other ways to run xtest, please refer to the “Run xtest” page at optee_test.

Tips and Tricks

Reference existing project to speed up repo sync

Doing a repo init, repo sync from scratch can take a fair amount of time. The main reason for that is simply
because of the size of some of the gits we are using, like for the Linux kernel and EDK2. With repo you can reference
an existing forest and by doing so you can speed up repo sync to taking 30 seconds instead of 15-30 minutes. The way
to do this are as follows.
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1. Start by setup a clean forest that you will not touch, in this example, let us call that optee-ref and put that
under for $HOME/devel/optee-ref. This step will take somewhere between 15- to 45 minutes, depending
on your connection speed to internet.

2. Then setup a cronjob (crontab -e) that does a repo sync in this folder particular folder once a night (that
is more than enough).

3. Now you should setup your actual tree which you are going to use as your working tree. The way to do this is
almost the same as stated in the instructions above (see the “Step 3 - Get the source code” section) , the only
difference is that you also reference the other local forest when running repo init, like this

$ repo init -u https://github.com/OP-TEE/manifest.git --reference $HOME/devel/
→˓optee-ref

4. The rest is the same above, but now it will only take a couple of seconds to clone a forest.

Normally ‘1’ and ‘2’ above is something you will only do once. Also if you ignore step ‘2’, then you will still get the
latest from official git trees, since repo will also check for updates that aren’t at the local reference.

Use ccache

ccache is a tool that caches build object-files etc locally on the disc and can speed up build time significantly in
subsequent builds. On Debian-based systems (Ubuntu, Mint etc) you simply install it by running:

$ sudo apt-get install ccache

The makefiles in build.git are configured to automatically find and use ccache if ccache is installed on your system, so
other than having it installed you don’t have to think about anything.

3.4.2 manifest

This page contains a couple of guidelines and rules that we want to try to follow when it comes to managing the
manifests.

git location

https://github.com/OP-TEE/manifest

Remotes

Since most of our projects can be found on GitHub, we are using that as the main remote. If you need to include other
remotes for some reason, then that is OK, but please double check of there is any maintained (and preferably official)
mirror for the project at GitHub before adding a new remote.

Sections

To have some kind of structure of the files, we have split them up in three sections, one for pure OP-TEE gits, one for
OP-TEE supporting gits found at linaro-swg and then a third, misc section where everything else can be found. I.e.,
a template looks like this (this also includes the default remote for clarity):
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<?xml version="1.0" encoding="UTF-8"?>
<manifest>

<remote name="github" fetch="https://github.com" />

<default remote="github" revision="master" />

<!-- OP-TEE gits -->
<!-- linaro-swg gits -->
<!-- Misc gits -->

</manifest>

Project XML elements

All <projects ... > lines should be on the format as shown below with the attributes in this order. The reason
for this is to have it uniformly done across all manifests and that it will make it easier when comparing various versions
of manifests with diff tools. All three attributes are mandatory. The only exception is revision which does not
have to be stated if it is master that we are tracking.

<project path="name_and_path_on_disk" name="upstream_name.git" revision="git_revsion"
→˓/>

Alphabetic order

Within each of the three sections, all <project ... > lines shall be sorted in alphabetic order (this is again for
making it easier to diff manifests). The only expection here is build.git which uses the linkfile element.
Having that at the end makes it look cleaner.

Additional XML attributes

If you are using another remote than the default, then that should come after the revision attribute (this is true for
all attributes other than the path, name and revision).

Alignment of XML attributes

The three mandatory XML attributes path, name and revision should be column aligned. Alignment of additional
XML attributes are optional.

When to use clone-depth=”1”?

With clone-depth="1" you are telling repo and git that you only want a certain commit and not the entire git
log history. You can only use this under two conditions and that is when revision is either a branch or a tag. Pure
SHA-1's does not work and will even raise repo and git sync errors in some cases. So, the rules are, if you use
either revision="refs/tags/my_tag" or revision="refs/heads/my_branch", then you shall add
clone-depth="1" right after the revision attribute.

Spaces or tabs?

Only use spaces!
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Example

Here is an example showing the basis for an OP-TEE manifest. The names are fictive etc, but it describes everything
said above.

<?xml version="1.0" encoding="UTF-8"?>
<manifest>

<remote name="github" fetch="https://github.com" />
<remote name="other" fetch="https://someotherlocation.com" />

<default remote="github" revision="master" />

<!-- OP-TEE gits -->
<project path="optee_abc" name="OP-TEE/optee_abc.git" />
<project path="optee_def" name="OP-TEE/optee_def.git" />

<!-- linaro-swg gits -->
<project path="lswg_abc" name="linaro-swg/lswg-abc.git" revision=

→˓"aaaabbbbcccc93e64c2fdd6ae8b0be14a8c45719" />
<project path="lswg_def" name="linaro-swg/lswg-def.git" revision=

→˓"ddddeeeeffff83e64c2fdd6ae8b0be14a8c45719" />

<!-- Misc gits -->
<project path="my_other" name="my_other.git" revision="refs/tags/

→˓2017.11" clone-depth="1" remote="other" />
</manifest>

3.4.3 optee_benchmark

This page describes how to get and build the OP-TEE benchmark framework. For the architectural details, please refer
to the Benchmark framework page instead.

git location

https://github.com/linaro-swg/optee_benchmark

License

The software is provided under the BSD 2-Clause license.

Build instructions

The benchmark framework spans across different architectural layers and therefore it doesn’t make much sense to
build it as a standalone build. Therefore we only give guidance telling how to enable it in full OP-TEE developer
builds. For general instructions for full OP-TEE developer builds, please refer to instructions at the build page. But
otherwise follow the instructions below to enable the benchmark framework.

Enable the benchmark framework

Before using Benchmark framework, OP-TEE should be rebuilt with the CFG_TEE_BENCHMARK flag enabled so that
the benchmark framework will be enabled in all architectural layers. You do that by:
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$ cd <optee-project>/build
$ make CFG_TEE_BENCHMARK=y

Benchmark application usage

When everything has been built (flashed) and you have booted up the device and you have a console ready to accept
command, then the next step is to run the actual benchmark application together with the host/TA application you
intend to benchmark. You do this my giving the host applicant as argument to the optee_benchmark binary. Let’s say
for example that you intend to benchmark the hello_world example. Then you invoke the benchmark like this:

$ benchmark hello_world

When client_app finish the execution, optee_benchmark will generate <client_app>.ts time stamp data file in
the same directory, where Client Application is stored (i.e., relative to hello_world in this case).

3.4.4 optee_client

optee_client git contains the source code for the TEE client library in Linux. This component provides the TEE Client
API as defined by the GlobalPlatform TEE standard. It is distributed under the BSD 2-clause open source license.

In this git there are two main targets/binaries to build. There is libteec.so, which is the library that contains
that API for communication with the Trusted OS. Then there is tee-supplicant which is a daemon serving the
Trusted OS in secure world with miscellaneous features, such as file system access.

git location

https://github.com/OP-TEE/optee_client

License

The software is provided under the BSD 2-Clause license.

Build instructions

You can build the code in this git only or build it as part of the entire system, i.e. as a part of a full OP-TEE developer
setup. For the latter, please refer to instructions at the build page. For standalone builds we currently support building
with both CMake as well as with regular GNU Makefiles.

Configure the toolchain

First step is to download and configure a toolchain, see the Toolchains page for instructions.

Clone optee_client

$ git clone https://github.com/OP-TEE/optee_client
$ cd optee_client
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Build using CMake

$ mkdir build
$ cd build
$ cmake -DCMAKE_C_COMPILER=arm-linux-gnueabihf-gcc ..
$ make

Note: This example uses the 32-bit toolchain (arm-linux-gnueabihf-), the same works using the 64-bit toolchain
(aarch64-linux-gnu-).

After this step the compiled binaries can be sound in sub-folders of build. If you have a need
or preference to install the binaries at some specific location, then on the cmake line above add
-DCMAKE_INSTALL_PREFIX=<my-install-path> as an additional argument. With that you can then run
make install and the binaries etc will be copied to the location that you gave as an argument. In this example
/tmp/optee_client.

$ cmake -DCMAKE_C_COMPILER=arm-linux-gnueabihf-gcc -DCMAKE_INSTALL_PREFIX=/tmp/optee_
→˓client ..
$ make
$ make install

Build using GNU Make

The Makefile is configured to use arm-linux-gnueabihf- by default.

$ make

Note: For a 64-bit builds (or any other toolchain) you will need to use CROSS_COMPILE.

$ make CROSS_COMPILE=aarch64-linux-gnu-

After this step the compiled binaries can be found in the sub-folder out.

Compiler flags

To be able to see all commands when building you could build using following flags:

GNU Make

$ make V=1

CMake

$ make VERBOSE=1

Coding standards

See Coding standards.
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3.4.5 optee_docs

This is the Git where all official OP-TEE documentation resides and this is what you are reading right now. Here
we will give instructions on how to write and build the documentation as well as give some guidelines on what to
do and not to do. Note that the documentation is written for Sphinx. So, even though GitHub for example renders
*.rst files somewhat OK, that is still not the preferred way to read and view the documentation. Instead head over
to https://optee.readthedocs.io where the final output is stored and nicely rendered using Sphinx.

git location

https://github.com/OP-TEE/optee_docs

Install Sphinx

Before doing anything else, first install Sphinx and the dependencies.

$ sudo apt install graphviz python3-sphinx python3-sphinx-rtd-theme

Build optee_docs

$ git clone https://github.com/OP-TEE/optee_docs
$ cd optee_docs
$ make html

After this step all documentation should have been built and you can open <optee_docs>/_build/html/
index.html in your browser to see the result and browse the documentation.

Hint: By using a Linux tool called entr. You can automatically rebuild the pages your are working with. First get
the package $ sudo apt install entr, then:

$ cd <optee_docs>
$ find . -name "*.rst" | entr -c make html

With this, entr will automatically rebuild the documentation everytime you make change and save a file. Which
means you only have to save the file in your editor and refresh the browser page to see the changes locally.

General guidelines

Linking

Internal links

Internally within a Sphinx project you can link various pages by referring to a keyword specified right above a section,
chapter or subsection. This means that you don’t have to make hardlinks to certain files. Instead Sphinx will just figure
out where it is for you. Example I have to files, file compiler.rst and toolchain.rst. They could look like this:
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compiler.rst example

1 ########
2 Compiler
3 ########
4 Bla bla bla
5

6 .. _compiler_flags:
7

8 Compiler Flags
9 **************

toolchain.rst example

1 ########
2 Toolchain
3 ########
4 Bla bla bla to see find out more about various flags, please refer
5 :ref:`compiler_flags`.

What we can see in the example, is that on line 5 in toolchain.rst we refer to the keyword in compiler.rst
by using :ref:`compiler_flags`. This would render a direct link to that section in compiler.rst.

General recommendation for OP-TEE internal linking

• Things about general things doesn’t have to be prefixed with the “document name”.

• Things that are specific should be prefixed with the “document name”.

Example: the “Contact” section is generic so it’s there is no need for prefix. But for example HiKey 620 build
instructions are specific to HiKey 620, so there we shall prefix keyword for internal linking.

rst files

The rst files should have descriptive names, but even more important is where you decide to put the files. Even though
it’s not a problem to move files around, we have to remember that we tend to quite often give links to documentation
from at GitHub, emails etc. If we move files, there is a high likelihood that they will become dead links in the future
(404’s). So think twice before adding a new file or moving an existing file.

Sections, chapters

We have adopted the Sphinx recommended way of using sections, chapters, subsections etc, those are:

• # with overline, for parts

• * with overline, for chapters

• =, for sections

• -, for subsections

• ^, for subsubsections

• “, for paragraphs
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3.4.6 optee_examples

This document describes the sample applications that are included in the OP-TEE, that aim to showcase specific
functionality and use cases.

For sake of simplicity, all OP-TEE example test application are prefixed with optee_example_. All of them works
as standalone host and Trusted Application and can be found in separate directories.

git location

https://github.com/linaro-swg/optee_examples

License

The software is provided under the BSD 2-Clause license.

Build instructions

You can build the code in this git only or build it as part of the entire system, i.e. as a part of a full OP-TEE developer
setup. For the latter, please refer to instructions at the build page. For standalone builds we currently support building
with both CMake as well as with regular GNU Makefiles. However, since the both the host and the Trusted Appli-
cations have dependencies to files in optee_client (libteec.so and headers) as well as optee_os (TA-devkit), one must
first build those and then refer to various files. Below we will show to to build the hello_world example for Armv7-A
using regular GNU Make.

Configure the toolchain

First step is to download and configure a toolchain, see the Toolchains page for instructions.

Build the dependencies

Then you must build optee_os as well as optee_client first. Build instructions for them can be found on their respective
pages.

Clone optee_examples

$ git clone https://github.com/linaro-swg/optee_examples.git

Build using GNU Make

Host application

$ cd optee_examples/hello_world/host
$ make \

CROSS_COMPILE=arm-linux-gnueabihf- \
TEEC_EXPORT=<optee_client>/out/export/usr \
--no-builtin-variables
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With this you end up with a binary optee_example_hello_world in the host folder where you did the build.

Trusted Application

$ cd optee_examples/hello_world/ta
$ make \

CROSS_COMPILE=arm-linux-gnueabihf- \
PLATFORM=vexpress-qemu_virt \
TA_DEV_KIT_DIR=<optee_os>/out/arm/export-ta_arm32

With this you end up with a files named uuid.{ta,elf,dmp,map} etc in the ta folder where you did the build.

Note: For a 64-bit builds (or any other toolchain) you will need to change CROSS_COMPILE (and also use a
PLATFORM corresponding to an Armv8-A configuration).

Coding standards

See Coding standards.

Example applications

acipher

Application name UUID
optee_example_acipher a734eed9-d6a1-4244-aa50-7c99719e7b7b

Generates an RSA key pair of specified size and encrypts a supplied string with it using the GlobalPlatform TEE
Internal Core API.

aes

Application name UUID
optee_example_aes 5dbac793-f574-4871-8ad3-04331ec17f24

Runs an AES encryption and decryption from a TA using the GlobalPlatform TEE Internal Core API. Non secure test
application provides the key, initial vector and ciphered data.

hello_world

Application name UUID
optee_example_hello_world 8aaaf200-2450-11e4-abe2-0002a5d5c51b

This is a very simple Trusted Application to answer a hello command and incrementing an integer value.
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hotp

Application name UUID
optee_example_hotp 484d4143-2d53-4841-3120-4a6f636b6542

HMAC based One Time Password in OP-TEE

HMAC based One Time Passwords or shortly just ‘HOTP’ has been around for many years and was initially defined
in RFC4226 back in 2005. Since then it has been a popular choice for doing two factor authentication. With the
implementation here we are showing how one could leverage OP-TEE for generating such HMAC based One Time
Passwords in a secure manner.

Client (OP-TEE) / Server solution

The most common way of using HOTP is in a client/server setup, where the client needs to authenticate itself to be
able to get access to some resources on the server. In those cases the server will ask for an One Time Password, the
client will generate that and send it over to the server and if the server is OK with the password it will grant access to
the client.

Technically how it is working is that the server and the client needs to agree on shared key (‘K’) and also start from
the same counter (‘C’). How that is done in practice is another topic, but RFC4226 has some discussion about it. You
should at least have a secure channel between the client and the server when sharing the key, but even better would be
if you could establish a secure channel all the way down to the TEE (currently we have TCP/UDP support in OP-TEE,
but not TLS).

When both the server and the client knows about and use the same key and counter they can start doing client authen-
tication using HOTP. In short what happens is that both the client and the server computes the same HOTP and the
server compares the result of both computations (which should be the same to grant access). How that could work can
be seen in the sequence diagram below.

In the current implementation we have OP-TEE acting as a client and the server is a remote service running somewhere
else. There is no server implemented, but that should be pretty easy to add in a real scenario. The important thing here
is to be able to register the shared key in the TEE and to get HOTP values from the TEE on request.

Since the current implementation works as a client we do not need to think about implementing the look-ahead syn-
chronization window (‘s’) nor do we have to think about adding throttling (which prevents/slows down brute force
attacks).

Sequence diagram - Client / Server

Client / Server (OP-TEE)?

Even though the current implementation works as a HOTP client, there is nothing saying that the implementation
cannot be updated to also work as the validating server. One could for example have a simple device (a [security
token] only generating one time passwords) and use the TEE as a validating service to open up other secure services.

random

Application name UUID
optee_example_random b6c53aba-9669-4668-a7f2-205629d00f86
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Generates a random UUID using capabilities of TEE API (TEE_GenerateRandom()).

secure_storage

Application name UUID
optee_example_secure_storage f4e750bb-1437-4fbf-8785-8d3580c34994

A Trusted Application to read/write raw data into the OP-TEE secure storage using the GlobalPlatform TEE Internal
Core API.

Further reading

Some additional information about how to write and compile Trusted Applications can be found at the Trusted Appli-
cations page.

3.4.7 optee_os

git location

https://github.com/OP-TEE/optee_os

License

The TEE core of optee_os is provided under the BSD 2-Clause license. But there are also other software such as
libraries included in optee_os. This “other” software will have different licenses that are compatible with BSD 2-
Clause (i.e., non-contaminating licenses unlike GPL-v2 for example).

Build instructions

You can build the code in this git only or build it as part of the entire system, i.e. as a part of a full OP-TEE developer
setup. For the latter, please refer to instructions at the build page. For standalone builds optee_os uses only regular
GNU Makefiles (i.e. no CMake support here unlike the other OP-TEE gits).

Configure the toolchain

First step is to download and configure a toolchain, see the Toolchains page for instructions.

Clone optee_os

$ git clone https://github.com/OP-TEE/optee_os
$ cd optee_os
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Build using GNU Make

Since optee_os supports many devices and configurations it’s impossible to give a examples to all variants. But
below is how you for example would build for QEMU running Armv7-A (AArch32), with debugging enabled and the
benchmark framework disabled and will put all built files in a folder name out/arm in the root of the git.

1 $ make \
2 CFG_TEE_BENCHMARK=n \
3 CFG_TEE_CORE_LOG_LEVEL=3 \
4 CROSS_COMPILE=arm-linux-gnueabihf- \
5 CROSS_COMPILE_core=arm-linux-gnueabihf- \
6 CROSS_COMPILE_ta_arm32=arm-linux-gnueabihf- \
7 CROSS_COMPILE_ta_arm64=aarch64-linux-gnu- \
8 DEBUG=1 \
9 O=out/arm \

10 PLATFORM=vexpress-qemu_virt

The same for an QEMU Armv8-A (AArch64) would look like this:

1 $ make \
2 CFG_ARM64_core=y \
3 CFG_TEE_BENCHMARK=n \
4 CFG_TEE_CORE_LOG_LEVEL=3 \
5 CROSS_COMPILE=aarch64-linux-gnu- \
6 CROSS_COMPILE_core=aarch64-linux-gnu- \
7 CROSS_COMPILE_ta_arm32=arm-linux-gnueabihf- \
8 CROSS_COMPILE_ta_arm64=aarch64-linux-gnu- \
9 DEBUG=1 \

10 O=out/arm \
11 PLATFORM=vexpress-qemu_armv8a

Hint: To be able to see all commands when building you could build with:

$ make V=1

Coding standards

See Coding standards.

Build system

The build system in optee_os consists of a main Makefile in the root of the project together with sub.mk files in
all source directories. In addition, some supporting files are used to recursively process all sub.mk files and generate
the build rules.
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Name Description
core/core.mk Included from Makefile to build the TEE Core
ta/ta.mk Included from Makefile to create the TA devkit
mk/compile.mk Create rules to make objects from source files
mk/lib.mk Create rules to make a libraries (.a)
mk/subdir.mk Process sub.mk files recursively
mk/config.mk Global configuration variable
core/arch/$(ARCH)/$(ARCH).mk Arch-specific compiler flags
core/arch/$(ARCH)/
plat-$(PLATFORM)/conf.mk

Platform-specific compiler flags and configuration variables

core/arch/$(ARCH)/
plat-$(PLATFORM)/link.mk

Make recipes to link the TEE Core

ta/arch/arm/link.mk Make recipes to link Trusted Applications
ta/mk/ta_dev_kit.mk Main Makefile to be included when building Trusted Applica-

tions
mk/checkconf.mk Utility functions to manipulate configuration variables and gen-

erate a C header file
sub.mk List source files and define compiler flags

make is always invoked from the top-level directory; there is no recursive invocation of make itself.

Choosing the build target

The target architecture, platform and build directory may be selected by setting environment or make variables
(VAR=value make or make VAR=value).

ARCH - CPU architecture

$(ARCH) is the CPU architecture to be built. Currently, the only supported value is arm for 32-bit or 64-bit
Armv7-A or Armv8-A. Please note that contrary to the Linux kernel, $(ARCH) should not be set to arm64 for
64-bit builds. The ARCH variable does not need to be set explicitly before building either, because the proper in-
struction set is selected from the $(PLATFORM) value. For platforms that support both 32-bit and 64-bit builds,
CFG_ARM64_core=y should be set to select 64-bit and not set (or set to n) to select 32-bit.

Architecture-specific source code belongs to sub-directories that follow the arch/$(ARCH) pattern, such as: core/
arch/arm, lib/libmpa/arch/arm, lib/libutee/arch/arm and so on.

CROSS_COMPILE

$(CROSS_COMPILE) is the prefix used to invoke the (32-bit) cross-compiler toolchain. The default value is
arm-linux-gnueabihf-. This is the variable you want to change in case you want to use ccache to speed
you recompilations:

$ make CROSS_COMPILE="ccache arm-linux-gnueabihf-"

If the build includes a mix of 32-bit and 64-bit code, for instance if you set CFG_ARM64_core=y to build a
64-bit secure kernel, then two different toolchains are used, that are controlled by $(CROSS_COMPILE32) and
$(CROSS_COMPILE64). The default value of $(CROSS_COMPILE32) is the value of CROSS_COMPILE, which
defaults to arm-linux-gnueabihf- as mentioned above. The default value of $(CROSS_COMPILE64) is
aarch64-linux-gnu-. Examples:
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# For this example, select HiKey which supports both 32- and 64-bit builds
$ export PLATFORM=hikey

# 1. Build everything 32-bit
$ make

# 2. Same as (1.) but override the toolchain
$ make CROSS_COMPILE="ccache arm-linux-gnueabihf-"

# 3. Same as (2.)
$ make CROSS_COMPILE32="ccache arm-linux-gnueabihf-"

# 4. Select 64-bit secure 'core' (and therefore both 32- and 64-bit
# Trusted Application libraries)
$ make CFG_ARM64_core=y

# 5. Same as (4.) but override the toolchains
$ make CFG_ARM64_core=y \

CROSS_COMPILE32="ccache arm-linux-gnueabihf-" \
CROSS_COMPILE64="ccache aarch64-linux-gnu-"

PLATFORM / PLATFORM_FLAVOR

A platform is a family of closely related hardware configurations. A platform flavor is a variant of such configurations.
When used together they define the target hardware on which OP-TEE will be run.

For instance PLATFORM=stm PLATFORM_FLAVOR=b2260 will build for the ST Microelectronics
96boards/cannes2 board, while PLATFORM=vexpress PLATFORM_FLAVOR=qemu_virt will generate
code for a para-virtualized Arm Versatile Express board running on QEMU.

For convenience, the flavor may be appended to the platform name with a dash, so make PLATFORM=stm-b2260
is a shortcut for make PLATFORM=stm PLATFORM_FLAVOR=b2260. Note that in both cases the value of
$(PLATFORM) is stm in the makefiles.

Platform-specific source code belongs to core/arch/$(ARCH)/plat-$(PLATFORM), for instance: core/
arch/arm/plat-vexpress or core/arch/arm/plat-stm.

O - output directory

All output files go into a platform-specific build directory, which is by default out/
$(ARCH)-plat-$(PLATFORM).

The output directory has basically the same structure as the source tree. For instance, assuming
ARCH=arm PLATFORM=stm, core/kernel/panic.c will compile into out/arm-plat-stm/core/
kernel/panic.o.

However, some libraries are compiled several times: once or twice for user mode, and once for kernel mode. This
is because they may be used by the TEE Core as well as by the Trusted Applications. As a result, the lib source
directory gives two or three build directories: ta_arm{32,64}-lib and core-lib.

The output directory also has an export-ta_arm{32,64} directory, which contains:

• All the files needed to build Trusted Applications.

– In lib/: libutee.a (the GlobalPlatform Internal API), libutils.a (which implements a part of
the standard C library), and libmpa.a (which implements multiple precision arithmetic and is required
by libutee.a).
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– In include/: header files for the above libraries

– In mk/: ta_dev_kit.mk, which is a Make include file with suitable rules to build a TA, and its depen-
dencies

– scripts/sign.py: a Python script used by ta_dev_kit.mk to sign TAs.

– In src: user_ta_header.c: source file to add a suitable header to the Trusted Application (as ex-
pected by the loader code in the TEE Core).

• Some files needed to build host applications (using the Client API), under export-ta_arm{32,64}/
host_include.

Finally, the build directory contains the auto-generated configuration file for the TEE Core: $(O)/include/
generated/conf.h (see below).

Configuration and flags

The following variables are defined in core/arch/$(ARCH)/$(ARCH).mk:

• $(core-platform-aflags), $(core-platform-cflags) and $(core-platform-cppflags)
are added to the assembler / C compiler / preprocessor flags for all source files compiled for TEE Core including
the kernel versions of libmpa.a and libutils.a.

• $(ta_arm{32,64}-platform-aflags), $(ta_arm{32,64}-platform-cflags) and
$(ta_arm{32,64}-platform-cppflags) are added to the assembler / C compiler / preproces-
sor flags when building the user-mode libraries (libutee.a, libutils.a, libmpa.a) or Trusted
Applications.

The following variables are defined in core/arch/$(ARCH)/plat-$(PLATFORM)/conf.mk:

• If $(arm{32,64}-platform-cflags), $(arm{32,64}-platform-aflags) and $(arm{32,
64}-platform-cppflags) are defined their content will be added to $(\*-platform-\*flags)
when they are are initialized in core/arch/$(ARCH)/$(ARCH).mk as described above.

• $(core-platform-subdirs) is the list of the subdirectories that are added to the TEE Core.

Linker scripts

The file core/arch/$(ARCH)/plat-$(PLATFORM)/link.mk contains the rules to link the TEE Core and
perform any related tasks, such as running objdump to produce a dump file. link.mk adds files to the all: target.

Source files

Each directory that contains source files has a file called sub.mk. This makefile defines the source files that should
be included in the build, as well as any subdirectories that should be processed, too. For example:

# core/arch/arm/sm/sub.mk
srcs-y += sm_asm.S
srcs-y += sm.c

# core/sub.mk
subdirs-y += kernel
subdirs-y += mm
subdirs-y += tee
subdirs-y += drivers
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The -y suffix is meant to facilitate conditional compilation. See section Configuration variables below.

srcs-y and subdirs-y are often not used together in the same sub.mk, because source files are usually alone in
leaf directories. But this is not a hard rule.

In addition to source files, sub.mk may define compiler flags, include directories and/or configuration variables as
explained below.

Compiler flags

Default compiler flags are defined in mk/compile.mk. Note that platform-specific flags must not appear in this file
which is common to all platforms.

To add flags for a given source file, you may use the following variables in sub.mk:

• cflags-<filename>-y for C files (*.c)

• aflags-<filename>-y for assembler files (*.S)

• cppflags-<filename>-y for both C and assembler

For instance:

# core/lib/libtomcrypt/src/pk/dh/sub.mk
srcs-y += dh.c
cflags-dh.c-y := -Wno-unused-variable

Compiler flags may also be removed, as follows:

# lib/libutils/isoc/newlib/sub.mk
srcs-y += memmove.c
cflags-remove-memmove.c-y += -Wcast-align

Some variables apply to libraries only (that is, when using mk/lib.mk) and affect all the source files that belong to
the library: cppflags-lib-y and cflags-lib-y.

Include directories

Include directories may be added to global-incdirs-y, in which case they will be accessible from all the
source files and will be copied to export-ta_arm{32,64}/include and export-ta_arm{32,64}/
host_include.

When sub.mk is used to build a library, incdirs-lib-y may receive additional directories that will be used for
that library only.

Configuration variables

Some features may be enabled, disabled or otherwise controlled at compile time through makefile variables. De-
fault values are normally provided in makefiles with the ?= operator so that their value may be easily overridden by
environment variables. For instance:

PLATFORM ?= stm
PLATFORM_FLAVOR ?= default
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Some global configuration variables are defined in mk/config.mk, but others may be defined in sub.mk when
then pertain to a specific library for instance.

Variables with the CFG_ prefix are treated in a special way: their value is automatically reflected in the generated
header file $(out-dir)/include/generated/conf.h, after all the included makefiles have been processed.
conf.h is automatically included by the preprocessor when a source file is built.

Depending on their value, variables may be considered either boolean or non-boolean, which affects how they are
translated into conf.h.

Boolean configuration variables

When a configuration variable controls the presence or absence of a feature, y means enabled, while n, empty value
or an undefined variable means disabled. For instance, the following commands are equivalent and would disable
feature CFG_CRYPTO_GCM:

$ make CFG_CRYPTO_GCM=n

$ make CFG_CRYPTO_GCM=

$ CFG_CRYPTO_GCM=n make

$ export CFG_CRYPTO_GCM=n
$ make

Configuration variables may then be used directly in sub.mk to trigger conditional compilation:

# core/lib/libtomcrypt/src/encauth/sub.mk
subdirs-$(CFG_CRYPTO_CCM) += ccm
subdirs-$(CFG_CRYPTO_GCM) += gcm

When a configuration variable is enabled (y), <generated/conf.h> contains a macro with the same name as
the variable and the value 1. If it is disabled, however, no macro definition is output. This allows the C code to use
constructs like:

/* core/lib/libtomcrypt/src/tee_ltc_provider.c */

/* ... */

#if defined(CFG_CRYPTO_GCM)
struct tee_gcm_state {

gcm_state ctx; /* the gcm state as defined by LTC */
size_t tag_len; /* tag length */

};
#endif

Non-boolean configuration variables

Configuration variables that are not recognized as booleans are simply output unchanged into <generated/conf.h>.
For instance:

$ make CFG_TEE_CORE_LOG_LEVEL=4
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/* out/arm-plat-vexpress/include/generated/conf.h */

#define CFG_TEE_CORE_LOG_LEVEL 4 /* '4' */

Configuration dependencies

Some combinations of configuration variables may not be valid. This should be dealt with by custom checks in
makefiles. mk/checkconf.h provides functions to help detect and deal with such situations.

3.4.8 optee_test

The optee_test.git contains the source code for the TEE sanity test suite in Linux using the ARM(R) TrustZone(R)
technology. It is typically referred to as xtest. By default there are several thousands of tests when running the code
that is in the git only. However, it is also possible to incorporate tests coming from GlobalPlatform (see Extended test
(GlobalPlatform tests)). We typically refer to these to as:

• Standard tests: These are the test that are included in optee_test. They are free and open source.

• Extended tests: Those are the tests that are written directly by GlobalPlatform. They are not open source and
they are not freely available (it’s free to members of GlobalPlatform and can otherwise be purchased directly
from GlobalPlatform).

git location

https://github.com/OP-TEE/optee_test

License

The client applications (optee_test/host/*) are provided under the GPL-2.0 license and the user Trusted Ap-
plications (optee_test/ta/*) are provided under the BSD 2-Clause.

Build instructions

At the moment you can only build the code in this git as part of the entire system, i.e. as a part of a full OP-TEE
developer setup. So, please refer to the instructions at the build page to learn how to build a full OP-TEE developer
setup. Building purely standalone is not possible (*) because:

• the host code (xtest) have dependencies to the optee_client (it links against libteec, openssl and uses
various headers)

• the Trusted Applications have dependencies to the TA-devkit built by optee_os.

Note: (*) It is of course possible to build this without a full OP-TEE developer setup, but it will require a lot of
tweaking with paths, flags etc. I.e., one would need to do exactly the same as the full OP-TEE developer setup does
under the hood.
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Extended test (GlobalPlatform tests)

One can purchase the GlobalPlatform Compliance Test suite which comes with .xml files describing the tests and the
Trusted Applications. The standard tests (xtest + TA’s) that are free and open source can be extended to also include
the GlobalPlatform test suite. This is done by:

• Install the GlobalPlatform xml files in $CFG_GP_PACKAGE_PATH.

• Run make patch (or call make xtest-patch from the build repository) before compiling xtest. This
must be run a single time after the installation of OP-TEE.

This will:

• Create new Trusted Applications, that can be found in ta/GP_xxx

• Create new tests in host/xtest, as for example xtest_9000.c

• Patches xtest_7000.c, adding new tests.

Then the tests must be compiled with CFG_GP_PACKAGE_PATH=<path>.

It makes use of the following environment variable:

• COMPILE_NS_USER: 32 or 64 if application shall be compiled in 32 bits mode on in 64 bits mode. If
COMPILE_NS_USER is not specified, build relies on CFG_ARM32_core=y from OP-TEE core build to as-
sume applications are in 32 bits mode, Otherwise, 64 bits mode is assumed.

Run xtest

It’s important to understand that you run xtest on the device itself, i.e., this is nothing that you run on the host
machine.

xtest - default

The most simple case is to run the default configuration:

$ xtest

xtest - all

This runs all tests within the standard xtest. Using the -l parameter you can tweak the amount of tests you will run.
15 is the most and 0 is the least.

$ xtest -l 15

xtest - single

To run a single test case, just specify its numbers, for example:

$ xtest 1001

3.4. OP-TEE gits 127

https://store.globalplatform.org/product/tee-initial-configuration-test-suite-with-excluded-tests-list-2/


OP-TEE Documentation

xtest - family

To run a family (1xxx, 2xxx and so on), just specify its number prefixed with an underscore. This for example will
run the 1xxx family.

$ xtest _1

xtest - benchmark

To run the benchmark tests, run xtest like this:

$ xtest -t benchmark

Here it is also possible to state a number for a certain benchmark test, for example:

$ xtest -t benchmark 2001

xtest - regression

To run the regression tests, run xtest like this:

$ xtest -t regression

Here it is also possible to state a number for a certain regression test, for example:

$ xtest -t regression 2004

xtest - aes-perf

This is benchmark test for AES and you run it like this:

$ xtest --aes-perf

Note: There is an individual help for --aes-perf, i.e.

$ xtest --aes-perf -h

xtest - sha-perf

This is benchmark test for SHA-xxx and you run it like this:

$ xtest --sha-perf

Note: There is an individual help for --sha-perf, i.e.

$ xtest --sha-perf -h

There you can select other SHA algorithms etc.
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Coding standards

See Coding standards.

3.5 Prerequisites

We believe that you can use any Linux distribution to build OP-TEE, but as maintainers of OP-TEE we are mainly
using Ubuntu-based distributions and to be able to build and run OP-TEE there are a few packages that needs to be
installed to start with. Therefore install the following packages regardless of what target you will use in the end.

$ sudo apt-get install android-tools-adb android-tools-fastboot autoconf \
automake bc bison build-essential ccache cscope curl device-tree-compiler \
expect flex ftp-upload gdisk iasl libattr1-dev libc6:i386 libcap-dev \
libfdt-dev libftdi-dev libglib2.0-dev libhidapi-dev libncurses5-dev \
libpixman-1-dev libssl-dev libstdc++6:i386 libtool libz1:i386 make \
mtools netcat python-crypto python3-crypto python-pyelftools \
python3-pyelftools python-serial python3-serial rsync unzip uuid-dev \
xdg-utils xterm xz-utils zlib1g-dev

3.6 Toolchains

OP-TEE uses both 32bit as well as 64bit toolchains and it is even possible to mix them in some configurations. In
theory you should be able to compile OP-TEE with the Arm toolchains that are coming with your Linux distribution.
But instead of using those directly, we instead download the toolchains directly from Arm.

3.6.1 Download/install

We propose two ways to download the toolchains, both will put the toolchains under the same path(s).

Direct download

Go the Arm GCC download page and download the “AArch32 target with soft float (arm-linux-gnueabi)” for 32bit
builds and the “AArch64 GNU/Linux target (aarch64-linux-gnu)” for 64bit builds. When the downloads have finished,
you will untar them to a location that you later on will export to your $PATH. Here is an example

$ mkdir -p $HOME/toolchains
$ cd $HOME/toolchains

# Download 32bit toolchain
$ wget https://developer.arm.com/-/media/Files/downloads/gnu-a/8.2-2019.01/gcc-arm-8.
→˓2-2019.01-x86_64-arm-linux-gnueabi.tar.xz
$ mkdir aarch32
$ tar xf gcc-arm-8.2-2019.01-x86_64-arm-linux-gnueabi.tar.xz -C aarch32 --strip-
→˓components=1

# Download 64bit toolchain
$ wget https://developer.arm.com/-/media/Files/downloads/gnu-a/8.2-2019.01/gcc-arm-8.
→˓2-2019.01-x86_64-aarch64-linux-gnu.tar.xz
$ mkdir aarch64
$ tar xf gcc-arm-8.2-2019.01-x86_64-aarch64-linux-gnu.tar.xz -C aarch64 --strip-
→˓components=1
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Using build.git

As an alternative, you can let build.git download them for you, but this of course involves getting a git that you might
not otherwise use.

$ cd $HOME
$ git clone https://github.com/OP-TEE/build.git
$ cd build
$ make -f toolchain.mk -j2

3.6.2 Export PATH

If you have downloaded the toolchains as described above, you should have them at $HOME/toolchains/
{aarch32/aarch64}, so now we just need to export the paths and then you are ready to starting compiling
OP-TEE components.

$ export PATH=$PATH:$HOME/toolchains/aarch32/bin:$HOME/toolchains/aarch64/bin

3.7 Trusted Applications

This document tells how to implement a Trusted Application for OP-TEE, using OP-TEE’s so called TA-devkit to both
build and sign the Trusted Application binary. In this document, a Trusted Application running in the OP-TEE os is
referred to as a TA. Note that in the default setup a private key generated by Linaro and distributed along with the
optee_os source is used for signing Trusted Applications. See TASign for more details, including offline signing of
TAs.

3.7.1 TA Mandatory files

The Makefile for a Trusted Application must be written to rely on OP-TEE TA-devkit resources in order to successfully
build the target application. TA-devkit is built when one builds optee_os.

To build a TA, one must provide:

• Makefile, a make file that should set some configuration variables and include the TA-devkit make file.

• sub.mk, a make file that lists the sources to build (local source files, subdirectories to parse, source file specific
build directives).

• user_ta_header_defines.h, a specific ANSI-C header file to define most of the TA properties.

• A implementation of at least the TA entry points, as extern functions:
TA_CreateEntryPoint(), TA_DestroyEntryPoint(), TA_OpenSessionEntryPoint(),
TA_CloseSessionEntryPoint(), TA_InvokeCommandEntryPoint()

TA file layout example

As an example, hello_world looks like this:

hello_world/
...
ta

Makefile BINARY=<uuid>

(continues on next page)
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(continued from previous page)

Android.mk Android way to invoke the Makefile
sub.mk srcs-y += hello_world_ta.c
include

hello_world_ta.h Header exported to non-secure: TA commands API
hello_world_ta.c Implementaion of TA entry points
user_ta_header_defines.h TA_UUID, TA_FLAGS, TA_DATA/STACK_SIZE, ...

3.7.2 TA Makefile Basics

Required variables

The main TA-devkit make file is located in in optee_os at ta/mk/ta_dev_kit.mk. The make file supports make
targets such as all and clean to build a TA or a library and clean the built objects.

The make file expects a couple of configuration variables:

TA_DEV_KIT_DIR Base directory of the TA-devkit. Used the TA-devkit itself to locate its tools.

BINARY and LIBNAME These are exclusive, meaning that you cannot use both at the same time. If building a TA,
BINARY shall provide the TA filename used to load the TA. The built and signed TA binary file will be named
${BINARY}.ta. In native OP-TEE, it is the TA UUID, used by tee-supplicant to identify TAs. If one is
building a static library (that will be later linked by a TA), then LIBNAME shall provide the name of the library.
The generated library binary file will be named lib${LIBNAME}.a

CROSS_COMPILE and CROSS_COMPILE32 Cross compiler for the TA or the library source files.
CROSS_COMPILE32 is optional. It allows to target AArch32 builds on AArch64 capable systems. On
AArch32 systems, CROSS_COMPILE32 defaults to CROSS_COMPILE.

Optional variables

Some optional configuration variables can be supported, for example:

O Base directory for build objects filetree. If not set, TA-devkit defaults to ./out from the TA source tree base directory.

Example Makefile

A typical Makefile for a TA looks something like this

# Append specific configuration to the C source build (here log=info)
# The UUID for the Trusted Application
BINARY=8aaaf200-2450-11e4-abe2-0002a5d5c51b

# Source the TA-devkit make file
include $(TA_DEV_KIT_DIR)/mk/ta_dev_kit.mk

sub.mk directives

The make file expects that current directory contains a file sub.mk that is the entry point for listing the source files to
build and other specific build directives. Here are a couple of examples of directives one can implement in a sub.mk
make file:
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# Adds /hello_world_ta.c from current directory to the list of the source
# file to build and link.
srcs-y += hello_world_ta.c

# Includes path **./include/** from the current directory to the include
# path.
global-incdirs-y += include/

# Adds directive -Wno-strict-prototypes only to the file hello_world_ta.c
cflags-hello_world_ta.c-y += -Wno-strict-prototypes

# Removes directive -Wno-strict-prototypes from the build directives for
# hello_world_ta.c only.
cflags-remove-hello_world_ta.c-y += -Wno-strict-prototypes

# Adds the static library foo to the list of the linker directive -lfoo.
libnames += foo

# Adds the directory path to the libraries pathes list. Archive file
# libfoo.a is expectd in this directory.
libdirs += path/to/libfoo/install/directory

# Adds the static library binary to the TA build dependencies.
libdeps += path/to/greatlib/libgreatlib.a

3.7.3 Android Build Environment

OP-TEE’s TA-devkit supports building in an Android build environment. One can write an Android.mk file for the
TA (stored side by side with the Makefile). Android’s build system will parse the Android.mk file for the TA which
in turn will parse a TA-devkit Android make file to locate TA build resources. Then the Android build will execute a
make command to built the TA through its generic Makefile file.

A typical Android.mk file for a TA looks like this (Android.mk for hello_world is used as an example here).

# Define base path for the TA sources filetree
LOCAL_PATH := $(call my-dir)

# Define the module name as the signed TA binary filename.
local_module := 8aaaf200-2450-11e4-abe2-0002a5d5c51b.ta

# Include the devikt Android mak script
include $(OPTEE_OS_DIR)/mk/aosp_optee.mk

3.7.4 TA Mandatory Entry Points

A TA must implement a couple of mandatory entry points, these are:

TEE_Result TA_CreateEntryPoint(void)
{

/* Allocate some resources, init something, ... */
...

/* Return with a status */
return TEE_SUCCESS;

(continues on next page)
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}

void TA_DestroyEntryPoint(void)
{

/* Release resources if required before TA destruction */
...

}

TEE_Result TA_OpenSessionEntryPoint(uint32_t ptype,
TEE_Param param[4],
void **session_id_ptr)

{
/* Check client identity, and alloc/init some session resources if any */
...

/* Return with a status */
return TEE_SUCCESS;

}

void TA_CloseSessionEntryPoint(void *sess_ptr)
{

/* check client and handle session resource release, if any */
...

}

TEE_Result TA_InvokeCommandEntryPoint(void *session_id,
uint32_t command_id,
uint32_t parameters_type,
TEE_Param parameters[4])

{
/* Decode the command and process execution of the target service */
...

/* Return with a status */
return TEE_SUCCESS;

}

3.7.5 TA Properties

Trusted Application properties shall be defined in a header file named user_ta_header_defines.h, which
should contain:

• TA_UUID defines the TA uuid value

• TA_FLAGS define some of the TA properties

• TA_STACK_SIZE defines the RAM size to be reserved for TA stack

• TA_DATA_SIZE defines the RAM size to be reserved for TA heap (TEE_Malloc() pool)

Refer to TA Properties to understand how to configure these macros.

Hint: UUIDs can be generated using python

python -c 'import uuid; print(uuid.uuid4())'

or in most Linux systems using either
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cat /proc/sys/kernel/random/uuid # Linux only
uuidgen # available from the util-linux package in most distributions

Example of a property header file

#ifndef USER_TA_HEADER_DEFINES_H
#define USER_TA_HEADER_DEFINES_H

#define TA_UUID
{ 0x8aaaf200, 0x2450, 0x11e4, \

{ 0xab, 0xe2, 0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b} }

#define TA_FLAGS (TA_FLAG_EXEC_DDR | \
TA_FLAG_SINGLE_INSTANCE | \
TA_FLAG_MULTI_SESSION)

#define TA_STACK_SIZE (2 * 1024)
#define TA_DATA_SIZE (32 * 1024)

#define TA_CURRENT_TA_EXT_PROPERTIES \
{ "gp.ta.description", USER_TA_PROP_TYPE_STRING, "Foo TA for some purpose." }, \
{ "gp.ta.version", USER_TA_PROP_TYPE_U32, &(const uint32_t){ 0x0100 } }

#endif /* USER_TA_HEADER_DEFINES_H */

Note: It is recommended to use the TA_CURRENT_TA_EXT_PROPERTIES as above to define extra properties of
the TA.

Note: Generating a fresh UUID with suitable formatting for the header file can be done using:

python -c "import uuid; u=uuid.uuid4(); print(u); \
n = [', 0x'] * 11; \
n[::2] = ['{:12x}'.format(u.node)[i:i + 2] for i in range(0, 12, 2)]; \
print('\n' + '#define TA_UUID\n\t{ ' + \

'0x{:08x}'.format(u.time_low) + ', ' + \
'0x{:04x}'.format(u.time_mid) + ', ' + \
'0x{:04x}'.format(u.time_hi_version) + ', \\ \n\n\t\t{ ' + \
'0x{:02x}'.format(u.clock_seq_hi_variant) + ', ' + \
'0x{:02x}'.format(u.clock_seq_low) + ', ' + \
'0x' + ''.join(n) + '} }')"

3.7.6 Checking TA parameters

GlobalPlatforms TEE Client APIs TEEC_InvokeCommand() and TEE_OpenSession() allow clients to in-
voke a TA with some invocation parameters: values or references to memory buffers. It is mandatory that
TA’s verify the parameters types before using the parameters themselves. For this a TA can rely on the macro
TEE_PARAM_TYPE_GET(param_type, param_index) to get the type of a parameter and check its value
according to the expected parameter.
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For example, if a TA expects that command ID 0 comes with params[0] being a input value, params[1] being
a output value, and params[2] being a in/out memory reference (buffer), then the TA should implemented the
following sequence:

TEE_Result handle_command_0(void *session, uint32_t cmd_id,
uint32_t param_types, TEE_Param params[4])

{
if ((TEE_PARAM_TYPE_GET(param_types, 0) != TEE_PARAM_TYPE_VALUE_IN) ||

(TEE_PARAM_TYPE_GET(param_types, 1) != TEE_PARAM_TYPE_VALUE_OUT) ||
(TEE_PARAM_TYPE_GET(param_types, 2) != TEE_PARAM_TYPE_MEMREF_INOUT) ||
(TEE_PARAM_TYPE_GET(param_types, 3) != TEE_PARAM_TYPE_NONE)) {
return TEE_ERROR_BAD_PARAMETERS

}

/* process command */
...

}

TEE_Result TA_InvokeCommandEntryPoint(void *session, uint32_t command_id,
uint32_t param_types, TEE_Param params[4])

{
switch (command_id) {
case 0:

return handle_command_0(session, param_types, params);

default:
return TEE_ERROR_NOT_SUPPORTED;

}
}

3.7.7 Signing of TAs

All REE Filesystem Trusted Applications need to be signed. The signature is verified by optee_os upon loading of the
TA. Within the optee_os source is a directory keys. The public part of keys/default_ta.pem will be compiled
into the optee_os binary and the signature of each TA will be verified against this key upon loading. Currently keys/
default_ta.pem must contain an RSA key.

Warning: optee_os comes with a default private key in its source to facilitate easy development, testing, debug-
ging and QA. Never deploy an optee_os binary with this key in production. Instead replace this key as soon as
possible with a public key and keep the private part of the key offline, preferably on an HSM.

Note: Currently only a single key for signing TAs is supported by optee_os.

TAs are signed using the sign.py script referenced from ta/mk/ta_dev_kit.mk in optee_os. Its default be-
haviour is to sign a compiled TA binary and attach the signature to form a complete TA for deployment. For offline
signing, a three-step process is required: In a first step a digest of the compiled binary has to be generated, in the
second step this digest is signed offline using the private key and finally in the third step the binary and its signature
are stitched together into the full TA.

3.7. Trusted Applications 135



OP-TEE Documentation

Offline Signing of TAs

The TA dev kit does sign an application as last step of the linking process. For example, the file ta/arch/arm/
link.mk in the optee_os source tree contains the statement

$(q)$(SIGN) --key $(TA_SIGN_KEY) --uuid $(user-ta-uuid) \
--in $$< --out $$@

To avoid build errors when signing offline, this make script needs to be adopted. The signing script can be found at
$(TA_DEV_KIT_DIR)/../scripts/sign.py

Overall, offline signing is done with the following sequence of steps:

0. (Preparation) Generate a 2048 bit RSA key for signing in a secure, offline environment. Extract the public key and
copy it to the keys directory in the optee_os source tree. Adjust TA_SIGN_KEY for different file/path names. (Copy
and) modify the link.mk file for the default linking step to produce a digest of the TA binary instead of the full TA.

1. Manually (or with the modified linking script) generate a digest of the TA binary using

sign.py digest --key $(TA_SIGN_KEY) --uuid $(user-ta-uuid)

2. Sign this digest offline, e.g. with OpenSSL

base64 --decode digestfile | \
openssl pkeyutl -sign -inkey $TA_SIGN_KEY \
-pkeyopt digest:sha256 -pkeyopt rsa_padding_mode:pkcs1 | \

base64 > sigfile

or with pkcs11-tool using a Nitrokey HSM

echo "0000: 3031300D 06096086 48016503 04020105 000420" | \
xxd -c 19 -r > /tmp/sighdr

cat /tmp/sighdr $(base64 --decode digestfile) > /tmp/hashtosign
pkcs11-tool --id $key_id -s --login -m RSA-PKCS \

--input-file /tmp/hashtosign | \
base64 > sigfile

3. Manually (or with an extra make target) stitch the TA together using

sign.py stitch --key $(TA_SIGN_KEY) --uuid $(user-ta-uuid)

By default the UUID is taken as the base file name for all files. Different file names and paths can be set through
additional options to sign.py. Consult sign.py --help for a full list of options and parameters.

136 Chapter 3. Build and run



CHAPTER 4

Debugging techniques

4.1 Abort dumps / call stack

When OP-TEE encounters a serious error condition, it prints diagnostic information to the secure console. The mes-
sage contains a call stack if CFG_UNWIND=y (enabled by default).

The following errors will trigger a dump:

• Data or prefetch abort exception in the TEE core (kernel mode) or in a TA (user mode),

• When a user-mode Trusted Application panics, either by calling TEE_Panic() directly or due to some error
detected by the TEE Core Internal API,

• When the TEE core detects a fatal error and decides to hang the system because there is no way to proceed
safely (core panic).

The messages look slightly different depending on:

• Whether the error is an exception or a panic,

• The exception/privilege level when the exception occurred (PL0/EL0 if a user mode Trusted Application was
running, PL1/EL1 if it was the TEE core),

• Whether the TEE and TA are 32 or 64 bits,

• The exact type of exception (data or prefetch abort, translation fault, read or write permission fault, alignment
errors etc).

Here is an example of a panic in a 32-bit Trusted Application, running on a 32-bit TEE core (QEMU):

E/TC:0 TA panicked with code 0x0
E/TC:0 Status of TA 484d4143-2d53-4841-3120-4a6f636b6542 (0xe07ba50) (active)
E/TC:0 arch: arm load address: 0x101000 ctx-idr: 1
E/TC:0 stack: 0x100000 4096
E/TC:0 region 0: va 0x100000 pa 0xe31d000 size 0x1000 flags rw-
E/TC:0 region 1: va 0x101000 pa 0xe300000 size 0xf000 flags r-x
E/TC:0 region 2: va 0x110000 pa 0xe30f000 size 0x3000 flags r--

(continues on next page)
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E/TC:0 region 3: va 0x113000 pa 0xe312000 size 0xb000 flags rw-
E/TC:0 region 4: va 0 pa 0 size 0 flags ---
E/TC:0 region 5: va 0 pa 0 size 0 flags ---
E/TC:0 region 6: va 0 pa 0 size 0 flags ---
E/TC:0 region 7: va 0 pa 0 size 0 flags ---
E/TC:0 Call stack:
E/TC:0 0x001044a8
E/TC:0 0x0010ba59
E/TC:0 0x00101093
E/TC:0 0x001013ed
E/TC:0 0x00101545
E/TC:0 0x0010441b
E/TC:0 0x00104477
D/TC:0 user_ta_enter:452 tee_user_ta_enter: TA panicked with code 0x0
D/TC:0 tee_ta_invoke_command:649 Error: ffff3024 of 3
D/TC:0 tee_ta_close_session:402 tee_ta_close_session(0xe07be98)
D/TC:0 tee_ta_close_session:421 Destroy session
D/TC:0 tee_ta_close_session:447 Destroy TA ctx

The above dump was triggered by the TA when entering an irrecoverable error ending up in a TEE_Panic(0) call.

OP-TEE provides a helper script called symbolize.py to facilitate the analysis of such issues. It is located in the
OP-TEE OS source tree in scripts/symbolize.py and is also copied to the TA development kit. Whenever you
are confronted with an error message reporting a serious error and containing a "Call stack:" line, you may use
the symbolize script.

symbolize.py reads its input from stdin and writes extended debug information to stdout. The -d (directo-
ries) option tells the script where to look for TA ELF file(s) (<uuid>.stripped.elf) or for tee.elf (the TEE
core). Please refer to symbolize.py --help for details.

Typical output:

$ cat dump.txt | ./optee_os/scripts/symbolize.py -d ./optee_examples/*/ta
# (or run the script, copy and paste the dump, then press Ctrl+D)
E/TC:0 TA panicked with code 0x0
E/TC:0 Status of TA 484d4143-2d53-4841-3120-4a6f636b6542 (0xe07ba50) (active)
E/TC:0 arch: arm load address: 0x101000 ctx-idr: 1
E/TC:0 stack: 0x100000 4096
E/TC:0 region 0: va 0x100000 pa 0xe31d000 size 0x1000 flags rw-
E/TC:0 region 1: va 0x101000 pa 0xe300000 size 0xf000 flags r-x .ta_head .text .
→˓rodata
E/TC:0 region 2: va 0x110000 pa 0xe30f000 size 0x3000 flags r-- .rodata .ARM.extab .
→˓ARM.extab.text.utee_panic .ARM.extab.text.__aeabi_ldivmod .ARM.extab.text.__aeabi_
→˓uldivmod .ARM.exidx .got .dynsym .rel.got .dynamic .dynstr .hash .rel.dyn
E/TC:0 region 3: va 0x113000 pa 0xe312000 size 0xb000 flags rw- .data .bss
E/TC:0 region 4: va 0 pa 0 size 0 flags ---
E/TC:0 region 5: va 0 pa 0 size 0 flags ---
E/TC:0 region 6: va 0 pa 0 size 0 flags ---
E/TC:0 region 7: va 0 pa 0 size 0 flags ---
E/TC:0 Call stack:
E/TC:0 0x001044a8 utee_panic at optee_os/lib/libutee/arch/arm/utee_syscalls_a32.S:74
E/TC:0 0x0010ba59 TEE_Panic at optee_os/lib/libutee/tee_api_panic.c:35
E/TC:0 0x00101093 hmac_sha1 at optee_examples/hotp/ta/hotp_ta.c:63
E/TC:0 0x001013ed get_hotp at optee_examples/hotp/ta/hotp_ta.c:171
E/TC:0 0x00101545 TA_InvokeCommandEntryPoint at optee_examples/hotp/ta/hotp_ta.c:225
E/TC:0 0x0010441b entry_invoke_command at optee_os/lib/libutee/arch/arm/user_ta_
→˓entry.c:207

(continues on next page)
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E/TC:0 0x00104477 __utee_entry at optee_os/lib/libutee/arch/arm/user_ta_entry.c:235
D/TC:0 user_ta_enter:452 tee_user_ta_enter: TA panicked with code 0x0 ???
D/TC:0 tee_ta_invoke_command:649 Error: ffff3024 of 3
D/TC:0 tee_ta_close_session:402 tee_ta_close_session(0xe07be98)
D/TC:0 tee_ta_close_session:421 Destroy session
D/TC:0 tee_ta_close_session:447 Destroy TA ctx

The Python script uses several tools from the GNU Binutils package to perform the following tasks:

1. Translate the call stack addresses into function names, file names and line numbers.

2. Convert the abort address to a symbol plus some offset and/or an ELF section name plus some offset.

3. Print the names of the ELF sections contained in each memory region of a TA.

Note that to successfully run symbolize.py you must also make your toolchain visible on the PATH (i.e., export
PATH=<my-toolchain-path>/bin:$PATH).

4.2 Benchmark framework

Due to its nature, OP-TEE is being a solution spanning over several architectural layers, where each layer includes its
own complex parts. For further optimizations of performance, there is a need of tool which will provide detailed and
precise profiling information for each layer.

It is necessary to receive latency values for:

• The roundtrip time for going from a client application in normal world, down to a Trusted Application and back
again.

• Detailed information for amount of time taken to go through each layer:

– libTEEC -> Linux OP-TEE kernel driver

– Linux OP-TEE kernel driver -> OP-TEE OS Core

– OP-TEE OS Core -> TA entry point (not supported yet)

– The same way back

4.2.1 Implementation details

Design overview

Benchmark framework consists of such components:

1. Benchmark Client Application (CA): a dedicated client application, which is responsible for allocating times-
tamp circular buffers, registering these buffers in the Benchmark PTA and consuming all timestamp data gener-
ated by all OP-TEE layers. Finally, it puts timestamp data into appropriate file with .ts extension. Additional
build details can be found at optee_benchmark.

2. Benchmark Pseudo Trusted Application (PTA): which owns all per-cpu circular non-secure buffers from a
shared memory. Benchmark PTA must be invoked (by a CA) to register the timestamp circular buffers. In turn,
the Benchmark PTA invokes the OP-TEE Linux driver (through some RPC mean) to register this circular buffers
in the Linux kernel layer.

3. libTEEC and Linux kernel OP-TEE driver include functionality for handling timestamp buffer registration
requests from the Benchmark PTA.
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When the benchmark is enabled, all OP-TEE layers (libTEEC, Linux kernel OP-TEE driver, OP-TEE OS core) do fill
the registered timestamp circular buffer with timestamp data for all invocation requests on condition that the circular
buffer is allocated/registered.

Timestamp source

Arm Performance Monitor Units are used as the main source of timestamp values. The reason why this technology
was chosen is that it is supported on all Armv7-A/Armv8-A cores. Besides it can provide precise pre-cpu cycle counter
values, it is possible to enable EL0 access to all events, so usermode applications can directly read cpu counter values
from coprocessor registers, achieving minimal latency by avoiding additional syscalls to EL1 core.

Besides CPU cycle counter values, timestamp by itself contains also information about:

• Executing CPU core index

• OP-TEE layer id, where this timestamp was obtained from

• Program counter value when timestamp was logged, which can be used for getting a symbol name (a filename
and line number)
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Call sequence diagram
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4.2.2 Adding custom timestamps

Currently, timestamping is done only for InvokeCommand calls, but it’s also possible to choose custom places in
the supported OP-TEE layers. To add timestamp storing command to custom c source file:

1. Include appropriate header:

• OP-TEE OS Core: bench.h

• Linux kernel OP-TEE module: optee_bench.h

• libTEEC: teec_benchmark.h

2. Invoke bm_timestamp() (for linux kmod use optee_bm_timestamp()) in the function, where you want
to put timestamp from.

4.2.3 Build and run benchmark

Please see the instructions available at optee_benchmark.

4.2.4 Limitations and further steps

• Implementation of application which will analyze timestamp data and provide statistics for different types of
calls providing avg/min/max values (both CPU cycles and time values).

• Add support for all platforms, where OP-TEE is supported.

• Adding support of S-EL0 timestamping.

• Attaching additional payload information to each timestamp, for example, session.

• Timestamping within interrupt context in the OP-TEE OS Core.

4.3 Ftrace

This section describes how to generate function call graph for user Trusted Applications using ftrace.

The configuration option CFG_TA_FTRACE_SUPPORT=y enables OP-TEE to collect function graph information
from Trusted Applications running in user mode and compiled with -pg. Once collected, the function graph data is
formatted in the ftrace.out format and sent to tee-supplicant via RPC, so they can be saved to disk, later
processed and displayed using helper script called symbolize.py present as part of optee_os repo.

4.3.1 Usage

• Build OP-TEE OS and OP-TEE Client with CFG_TA_FTRACE_SUPPORT=y. You may also set
CFG_ULIBS_MCOUNT=y in OP-TEE OS to instrument the user TA libraries (libutee, libutils, libmpa).

• Build user TAs with -pg, for instance enable CFG_TA_MCOUNT=y to instrument whole TA. Also,
in case user wants to set -pg for a particular file, following should go in corresponding sub.mk:
cflags-<file-name>-y+=-pg. Note that instrumented TAs have a larger .bss section. The memory
overhead depends on CFG_FTRACE_BUF_SIZE macro which can be configured specific to user TAs using
config: CFG_FTRACE_BUF_SIZE=4096 (default value: 2048, refer to the TA linker script for details: ta/
arch/arm/ta.ld.S).
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• Run the application normally. When the current session exits or there is any abort during TA execution,
tee-supplicant will write function graph data to /tmp/ftrace-<ta_uuid>.out. If the file already
exists, a number is appended, such as: ftrace-<ta_uuid>.1.out.

• Run helper script called symbolize.py to translate the function graph addresses into function names: cat
ftrace-<ta_uuid>.out | ./optee_os/scripts/symbolize.py -d <ta_uuid>.elf

4.3.2 Typical output

| __ta_entry() {
| __utee_entry() {

1.664 us | ta_header_get_session();
11.264 us | from_utee_params();
.896 us | memcpy();

| TA_InvokeCommandEntryPoint() {
| TEE_GenerateRandom() {

163.360 us | utee_cryp_random_number_generate();
186.848 us | }
214.288 us | }
19.088 us | to_utee_params();

| ta_header_save_params() {
.736 us | memset();
2.832 us | }

304.880 us | }
307.168 us | }

The duration (function’s time of execution) is displayed on the closing bracket line of a function or on the same line
in case the function is the leaf one. In other words, duration is displayed whenever an instrumented function returns.
It comprises the time spent executing the function and any of its callees. The Counter-timer Physical Count register
(CNTPCT) and the Counter-timer Frequency register (CNTFRQ) are used to compute durations. Time spent servicing
foreign interrupts is subtracted.

4.4 Gprof

This describes to do profiling of user Trusted Applications with gprof.

The configuration option CFG_TA_GPROF_SUPPORT=y enables OP-TEE to collect profiling information from
Trusted Applications running in user mode and compiled with -pg. Once collected, the profiling data are formatted
in the gmon.out format and sent to tee-supplicant via RPC, so they can be saved to disk and later processed
and displayed by the standard gprof tool.

4.4.1 Usage

• Build OP-TEE OS with CFG_TA_GPROF_SUPPORT=y. You may also set CFG_ULIBS_MCOUNT=y to in-
strument the user TA libraries (libutee, libutils, libmpa).

• Build user TAs with -pg, for instance enable: CFG_TA_MCOUNT=y to instrument whole user TA. Note that
instrumented TAs have a larger .bss section. The memory overhead is 1.36 times the .text size for 32-bit
TAs, and 1.77 times for 64-bit ones (refer to the TA linker script for details: ta/arch/arm/ta.ld.S).

• Run the application normally. When the last session exits, tee-supplicant will write profiling
data to /tmp/gmon-<ta_uuid>.out. If the file already exists, a number is appended, such as:
gmon-<ta_uuid>.1.out.
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• Run gprof on the TA ELF file and profiling output: gprof <ta_uuid>.elf gmon-<ta_uuid>.out

4.4.2 Implementation

Part of the profiling is implemented in libutee. Another part is done in the TEE core by a pseudo-TA (core/arch/
arm/sta/gprof.c). Two types of data are collected:

1. Call graph information

• When TA source files are compiled with the -pg switch, the compiler generates extra code into each
function prologue to call the instrumentation entry point (__gnu_mcount_nc or _mcount de-
pending on the architecture). Each time an instrumented function is called, libutee records a pair of
program counters (one is the caller and the other one is the callee) as well as the number of times this
specific arc of the call graph has been invoked.

2. PC distribution over time

• When an instrumented TA starts, libutee calls the pseudo-TA to start PC sampling for the current
session. Sampling data are written into the user-space buffer directly by the TEE core.

• Whenever the TA execution is interrupted, the TEE core records the current program counter value
and builds a histogram of program locations (i.e., relative amount of time spent for each value of the
PC). This is later used by the gprof tool to derive the time spent in each function. The sampling rate,
which is assumed to be roughly constant, is computed by keeping track of the time spent executing
user TA code and dividing the number of interrupts by the total time.

• The profiling buffer into which call graph and sampling data are recorded is allocated in the TA’s
.bss section. Some space is reserved by the linker script, only when the TA is instrumented.
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Frequently Asked Questions

Table of Contents

• Frequently Asked Questions

– Abbreviations

– Architecture

* Q: Which platforms/architectures are supported?

* Q: Are 32-bit as well as 64-bit support?

* Q: Does OP-TEE support mixed-mode, i.e., both AArch32 and AArch64 Trusted Applications on
top of an AArch64 core?

* Q: What’s the maximum size for heap and stack? Can it be changed?

* Q: What is the size of OP-TEE itself?

* Q: Can NEON optimizations be done in OP-TEE?

* Q: Can I use C++ libraries in OP-TEE?

* Q: Would using malloc() in OP-TEE give physically contiguous memory?

* Q: Can I limit what CPUs / cores OP-TEE runs on?

* Q: How is OP-TEE being scheduled?

– Board support

* Q: How do I port OP-TEE to another platform?

– Building

* Q: I got build errors running latest, why?

* Q: I got build errors running stable tag x.y.z, why?
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* Q: I get gcc XYZ or g++ XYZ compiler error messages?

* Q: I found this build.git, what is that?

* Q: When running make from build.git it fails to download the toolchains?

* Q: What is the quickest and easiest way to try OP-TEE?

– Certification and security reviews

* Q: Will linaro be involved in GlobalPlatform certification/qualification?

* Q: Has any test lab been testing OP-TEE?

* Q: Have there been any code audit / code review done?

– Contribution

* Q: How do I contribute?

* Q: Where can I get help?

* Q: I’m new to OP-TEE but I would like to help out, what can I do?

– Interfaces

* Q: Which API’s have been implemented in OP-TEE?

– Hardware and peripherals

* Q: Can I use my own hardware IP for crypto acceleration?

– License

* Q: Under what license is OP-TEE released?

* Q: GlobalPlatform click-through license

* Q: I’ve modified OP-TEE by using code with non BSD 2-Clause license, will you accept it?

– Promotion

* Q: I want to get my company logo on op-tee.org, how?

– Security vulnerabilities

* Q: I have a found a security flaw in OP-TEE, how can I disclose it with you?

– Source code

* Q: Where is the source code?

* Q: Where do I download the test suite called xtest?

* Q: Where is the Linux kernel TEE driver?

– Testing

* Q: How are you testing OP-TEE?

– Trusted Applications

* Q: How do I write a Trusted Application (TA)?

* Q: How do I link a library into a Trusted Application?

* Q: Where should I put my compiled Trusted Application on the device?

* Q: What is a Psuedo TA and how do I write one?
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* Q: Are Psuedo user space TAs supported?

* Q: Can a static TA Open/Invoke dynamic TA?

* Q: How can I extend the GlobalPlatform Internal Core API?

* Q: How are Trusted Applications verified?

* Q: Is multi-core TA supported?

* Q: Is multi-threading supported in a TA?

* Q: How can I use or call OP-TEE from native Android (apk) applications?

* Q: I’ve heard that there is a Widevine and PlayReady TA, how do I get access?

5.1 Abbreviations

OP-TEE Open Portable TEE

TA Trusted Application

TEE Trusted Execution Environment

TZASC TrustZone Address Space Controller

TZPC TrustZone Protection Controller

5.2 Architecture

5.2.1 Q: Which platforms/architectures are supported?

• The Platforms supported page lists all platforms and architectures currently supported in the official tree.

5.2.2 Q: Are 32-bit as well as 64-bit support?

• Both 32- and 64-bit are fully supported for all OP-TEE components.

5.2.3 Q: Does OP-TEE support mixed-mode, i.e., both AArch32 and AArch64
Trusted Applications on top of an AArch64 core?

• Yes!

5.2.4 Q: What’s the maximum size for heap and stack? Can it be changed?

• Yes, it can be changed. In the current setup (for vexpress for example), there are 32MB DDR dedicated for
OP-TEE. 1MB for TEE RAM and 1MB for PUB RAM, this leaves 30MB for Trusted Applications. In the Trusted
Applications, you set TA_STACK_SIZE and TA_DATA_SIZE. Typically, we set stack to 2KB and data to
32K. But you are free to adjust those according to the amount of memory you have available. If you need them
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to be bigger than 1MB then you also must adjust TA’s MMU L1 table accordingly, since default section mapping
is 1MB.

5.2.5 Q: What is the size of OP-TEE itself?

• As of 2016.01, optee_os is about 244KB (release build). It is preferred to run optee_os entierly in SRAM,
but if there is not enough room, DRAM can be used and protected with TZASC. We are also looking into the
possibility of creating a ‘minimal’ OP-TEE, i.e. a limited OP-TEE usable even in a very memory constrained
environment, by eliminating as many memory-hungry parts as possible. There is however no ETA for this at the
moment.

• You can check the memory usage by using the make mem_usage target in optee_os, for example:

$ make ... mem_usage
# Which will output a file with the figures here:
# out/arm/core/tee.mem_usage

You will of course get different sizes depending on what compile time flags you have enabled when running
make mem_usage.

5.2.6 Q: Can NEON optimizations be done in OP-TEE?

• Yes (for additional information, please also see Issue#953)

5.2.7 Q: Can I use C++ libraries in OP-TEE?

• C++ libraries are currently not supported. Technically, it is possible but will require a fair amount of work to
implement, especially more so if exceptions are required. There are currently no plans to do this.

• See Issue#2628 for related information.

5.2.8 Q: Would using malloc() in OP-TEE give physically contiguous memory?

• malloc() in OP-TEE currently gives physically contiguous memory. It is not guaranteed as it is not mentioned
anywhere in the documentation, but in practice the heap only has physically contiguous memory in the pool(s).
The heap in OP-TEE is normally quite small, ~24KiB, and could be a bit fragmented.

5.2.9 Q: Can I limit what CPUs / cores OP-TEE runs on?

• Currently it’s up to the kernel to decide which core it runs on, i.e, it will be the same core as the one initiating
the SMC in Linux. Please also see Issue#1194.

5.2.10 Q: How is OP-TEE being scheduled?

• OP-TEE does not have its own scheduler, instead it is being scheduled by Linux kernel. For more information,
please see Issue#1036 and Issue#1183.
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5.3 Board support

5.3.1 Q: How do I port OP-TEE to another platform?

• Start by reading the Porting guidelines.

• See the Presentations page. There might be some interesting information in the “LCU14-302 How To Port
OP-TEE To Another Platform” deck and video. Beware that the presentation is more than five years old, so even
though it is a good source, there might be parts that are not relevant any longer.

• As a good example for

– Armv8-A patch enabling OP-TEE support on a new device, please see the ZynqMP port that enabled
support for running OP-TEE on Xilinx UltraScale+ Zynq MPSoC. Besides that there are similar patches
for Juno port, Raspberry Pi3 port, HiKey port.

– ARMv7-A, please have a look at the Freescale ls1021a port, another example would be the TI DRA7xx
port.

5.4 Building

5.4.1 Q: I got build errors running latest, why?

• What did you try to build? Only optee_os? A full OP-TEE developer setup using QEMU, HiKey, RPi3, Juno
using repo? AOSP? OpenEmbedded? What we build on daily basis are the OP-TEE developer setups (see
Platforms supported by build.git) , but other builds like AOSP and OpenEmbedded are builds that we try from
time to time, but not very often within Security Working Group. Having that said there are other teams in Linaro
working with such builds, but they most often base their builds on OP-TEE stable releases.

• By running latest instead of stable also comes with a risk of getting build errors due to version and/or interde-
pendency skew which can result in build error. Now, such issues most often affects running xtest and not the
building. If you however clean all gits and do a repo sync -d. Then we’re almost 100% sure you will get
back to a working state again, since as mentioned in next bullet, we build (and run xtest) on all QEMU on all
patches sent to OP-TEE.

• Every pull request in OP-TEE are tested on hardware (see Q: How are you testing OP-TEE?).

5.4.2 Q: I got build errors running stable tag x.y.z, why?

• Stable releases are quite well tested both in terms of building for all supported platforms and running xtest on all
platforms, so if you cannot get that to build and run, then there is a great chance you have something wrong on
your side. All platforms that has been tested on a stable release can be found in CHANGELOG.md file. Having
that said, we do make mistakes on stable builds also from time to time.

5.4.3 Q: I get gcc XYZ or g++ XYZ compiler error messages?

• Most likely you’re trying to build OP-TEE using the regular x86 compiler and not the using the Arm toolchain.
Please install the Prerequisites and make sure you have gotten and installed the Arm toolchains as described at
the Toolchains page. (for additional information, please see Issue#846).
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5.4.4 Q: I found this build.git, what is that?

• build is a git that is used in conjunction with the manifest to create full OP-TEE developer builds. It contains
helper makefiles that makes it easy to get OP-TEE up and running on the setups that are using repo.

5.4.5 Q: When running make from build.git it fails to download the toolchains?

• We try to stay somewhat up to date with running recent GCC versions. But just like everywhere else on the net
things moves around. In some cases like Issue#1195, the URL was changed without us noticing it. If you find
and fix such an issue, please send the fix as pull request and we will be happy to merge it.

5.4.6 Q: What is the quickest and easiest way to try OP-TEE?

• That would be running it on QEMU on a local PC. To do that you would need to:

– Install the OP-TEE Prerequisites.

– Build for QEMU according to the instructions at QEMU v7.

– And Run xtest.

• By summarizing the above, you would need to:

$ sudo apt-get install [pre-reqs]
$ mkdir optee-qemu && cd optee-qemu
$ repo init -u https://github.com/OP-TEE/manifest.git
$ repo sync
$ cd build
$ make toolchains -j2
$ make run
QEMU console: (qemu) c
Normal world shell: # xtest

5.5 Certification and security reviews

5.5.1 Q: Will linaro be involved in GlobalPlatform certification/qualification?

• No we will not, mainly for two reasons. The first is that there was a board decision that Security WG in Linaro
should not be part of certifications. The second reason is that most often certification is done using a certain
software version and on a unique device. I.e., it is the combination software + hardware that gets certified. Since
Linaro have no own devices in production or for sale, we cannot be part of any certification. This is typically
something that the SoC or OEM needs to do.

• But it is worth mentioning that since OP-TEE is coming from a proprietary TEE solution that was GlobalPlat-
form certified on some products in the past and we regularly have people from some member companies running
the extended test suite from GlobalPlatform we know that the gap to become GlobalPlatform certified/qualified
isn’t that big.
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5.5.2 Q: Has any test lab been testing OP-TEE?

• Applus Laboratories have done some side-channel attack testing and fault injection testing on OP-TEE using
the HiKey 620 device. Their findings and fixes can be found at the Security Advisories page at optee.org.

• Riscure did a mini-audit of OP-TEE which generated a couple of patches (see PR#2745). The Security Advi-
sories page at optee.org will be updated with more information regarding that in the future.

5.5.3 Q: Have there been any code audit / code review done?

• Full audit? No! Not something initiated by Linaro. But there has been some companies that have done audits
internally and they have then shared the result with us and where relevant, we have created patches resolving
the issues reported to us (see Q: Has any test lab been testing OP-TEE?).

• Code review, yes! Every single patch going into OP-TEE has been reviewed in a pull request on GitHub. We
more or less have a requirement that every patch going into OP-TEE shall at least have one “Reviewed-by” tag
in the patch.

• Third party / test lab code review, no! Again some companies have reviewed internally and shared the result
with us, but other than that no (see related Q: Has any test lab been testing OP-TEE?)

5.6 Contribution

5.6.1 Q: How do I contribute?

• Please see the Contribute page.

5.6.2 Q: Where can I get help?

• Please see the Contact page.

5.6.3 Q: I’m new to OP-TEE but I would like to help out, what can I do?

• We always need help with code reviews, feel free to review any of the open OP-TEE OS Pull Requests. Please
also note that there could be open pull request in the other OP-TEE gits that needs reviews too.

• We always need help answering all the questions asked at OP-TEE OS Issues.

• If you want to try to solve a bug, please have a look at the OP-TEE OS Bugs or the OP-TEE OS Enhancements.

• Documentation tends to become obsolete if not maintained on regular basis. We try to do our best, but we’re not
perfect. Please have a look at optee_docs and try to update where you find gaps.

• Enable repo for the device in manifest and build (and also Platforms supported) currently not using repo.

• If you would like to implement a bigger feature, please reach out to us (see Contact) and we can discuss what is
most relevant to look into for the moment. If you already have an idea, feel free to send the proposal to us.
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5.7 Interfaces

5.7.1 Q: Which API’s have been implemented in OP-TEE?

• GlobalPlatform (see GlobalPlatform API for more details).

– GlobalPlatform’s TEE Client API v1.1 specification

– GlobalPlatform’s TEE Internal Core API v1.1 specification.

– GlobalPlatform’s Secure Elements v1.0 (now deprecated, see git log).

– GlobalPlatform’s Socket API v1.0 (TCP and UDP, but not TLS).

• AOSP Keymaster (v3) and AOSP Gatekeeper (see AOSP for more details).

• Android Verified Boot 2.0 (AVB 2.0)

5.8 Hardware and peripherals

5.8.1 Q: Can I use my own hardware IP for crypto acceleration?

• Yes, OP-TEE has a Crypto Abstraction Layer (see Cryptographic implementation that was designed mainly
to make it easy to add support for hardware crypto acceleration. There you will find information about the
abstraction layer itself and what you need to do to be able to support new software/hardware “drivers” in OP-
TEE.

5.9 License

5.9.1 Q: Under what license is OP-TEE released?

• The software is mostly provided under the BSD 2-Clause license.

• The TEE kernel driver is released under GPLv2 for obvious reasons.

• xtest (optee_test) uses BSD 2-Clause for code running in secure world (Trusted Applications etc) and GPLv2
for code running in normal world (client code).

5.9.2 Q: GlobalPlatform click-through license

• Since OP-TEE is a GlobalPlatform based TEE which implements the APIs as specified by GlobalPlatform one
has to accept, the click-through license which is presented when trying to download the GlobalPlatform API
specifications before start using OP-TEE.
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5.9.3 Q: I’ve modified OP-TEE by using code with non BSD 2-Clause license, will
you accept it?

• That is something we deal with case by case. But as a general answer, if it does not contaminate the BSD
2-Clause license we will accept it. Reach out to us (see Contact) and we will take it from there.

5.10 Promotion

5.10.1 Q: I want to get my company logo on op-tee.org, how?

• If your company has done significant contributions to OP-TEE, then please Contact us and we will do our best
to include your company. Pay attention to that we will review this on regular basis and inactive supporting
companies might be removed in the future again.

5.11 Security vulnerabilities

5.11.1 Q: I have a found a security flaw in OP-TEE, how can I disclose it with you?

• Please see the Contact page and the Disclosure policy page.

5.12 Source code

5.12.1 Q: Where is the source code?

• It is located on GitHub under the project OP-TEE and linaro-swg.

5.12.2 Q: Where do I download the test suite called xtest?

• All the source code for that can be found in the git called optee_test.

• The Extended test (GlobalPlatform tests) can be purchased separately.

5.12.3 Q: Where is the Linux kernel TEE driver?

• You can find both the generic TEE framework including the OP-TEE driver included in the official Linux kernel
project since v4.12. Having that said, we “buffer up” pending patches on a our Linux kernel TEE framework
branch. I.e., that is where we keep new features being developed for OP-TEE. In the long run we aim to
completely stop using our own branch and just send all patches to the official Linux kernel tree directly. But as
of now we cannot do that.
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5.13 Testing

5.13.1 Q: How are you testing OP-TEE?

• There is a test suite called xtest that tests the complete TEE-solution to ensure that the communication between
all architectural layers is working as it should. The test suite also tests the majority of the GlobalPlatform TEE
Internal Core API. It has close to 50,000 and ever increasing test cases, and is also extendable to include the
official GlobalPlatform test suite (see Extended test (GlobalPlatform tests)).

• Every pull request in OP-TEE are built for a multitude of different platforms automatically using Travis, Ship-
pable and IBART. Please have a look there to see whether it failed building on the platform you’re using before
submitting any issue about build errors.

• For more information see optee_test.

5.14 Trusted Applications

5.14.1 Q: How do I write a Trusted Application (TA)?

• Have a look at the Trusted Applications page as well as the optee_examples page. Those provides guidelines
and examples on how to implement basic Trusted Applications.

• If you want to see more advanced uses cases of Trusted Applications, then we encourage that you have a look
at the Trusted Applications optee_test.

5.14.2 Q: How do I link a library into a Trusted Application?

• See the example in sub.mk directives.

• Also see Issue#280, Issue#601, Issue#901, Issue#1003.

5.14.3 Q: Where should I put my compiled Trusted Application on the device?

• /lib/optee_armtz, that is the default location where tee-supplicant will look for Trusted Applications.

5.14.4 Q: What is a Psuedo TA and how do I write one?

• A Psuedo TA is an OP-TEE firmware service offered through the generic API used to invoke Trusted Applica-
tions. Pseudo TA interface and services all runs in TEE kernel / core context. I.e., it will have access to the same
functions, memory and hardware etc as the TEE core itself. If we’re talking ARMv8-A it is running in S-EL1.

5.14.5 Q: Are Psuedo user space TAs supported?

• No!
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5.14.6 Q: Can a static TA Open/Invoke dynamic TA?

• Yes, for a longer discussion see Issue#967, Issue#1085, Issue#1132.

5.14.7 Q: How can I extend the GlobalPlatform Internal Core API?

• You may develop your own “Psuedo TA”, which is part of the core (see Q: What is a Psuedo TA and how do I
write one? for more information about the Psuedo TA).

5.14.8 Q: How are Trusted Applications verified?

• Please see the section Trusted Application private/public keypair in the Porting guidelines.

• Alternatively one can also build a Trusted Application and embed its raw binary content into the OP-TEE
firmware binary. At runtime, if invoked, the Trusted Application will be loaded from the OP-TEE firmware
image instead of being fetched from the normal world and authenticated in the secure world (see Early TA for
more information).

5.14.9 Q: Is multi-core TA supported?

• Yes, you can have two or more TAs running simultaneously. Please see also Issue#1194.

5.14.10 Q: Is multi-threading supported in a TA?

• No, there is no such concept as pthreads or similar. I.e, you cannot spawn thread from a TA. If you need to
run tasks in parallel, then you should probably look into running two TAs or more simultaneously and then let
them communicate with each other using the TA2TA interface.

5.14.11 Q: How can I use or call OP-TEE from native Android (apk) applications?

• Use the Java Native Interface (JNI).

• First get familiar with sample_hellojni.html and make sure you can run the sample. After that, replace the C-side
Implementation with for example hello_world or one of the other examples in optee_examples.

Note: Note that hello_world and other binaries in optee_examples are built as executables, and have to be
modified to be built as a .so shared library instead so that it can be loaded by the Java-side Implementation.

• Note that *.apk apps by default have no access to the TEE driver. See Issue#903 for details. The workaround
is to disable SELinux before launching any *.apk app that calls into OP-TEE. The solution is to create/write
SELinux domains/rules to allow any required access, but since this is not a TEE-related issue, it is left as an
exercise for the users.

5.14.12 Q: I’ve heard that there is a Widevine and PlayReady TA, how do I get ac-
cess?

• Those can only be shared are under WMLA and NDA/MLA with Google and Microsoft. Linaro can help
members of Linaro to get access to those. As of now, we cannot share it with non-members.
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